Artificial Intelligence and big data technologies for Copernicus data: The EXTREMEEARTH project
Koubarakis, Manolis; Stamoulis, George; Bilidas, Dimitris; Ioannidis, Theofilos; Mandilaras, George; Pantazi, Despina-Athanasia; Papadakis, George; Vlassov, Vladimir; Payberah, Amir H.; Wang, Tianze; Sheikholeslami, Sina; Hagos, Desta Haileselassie; Bruzzone, Lorenzo; Paris, Claudia; Weikmann, Giulio; Marinelli, Daniele; Eltoft, Torbjørn; Marinoni, Andrea; Kræmer, Thomas; Khaleghian, Salman; Ullah, Habib; Troumpoukis, Antonis; Kostopoulou, Nefeli Prokopaki; Konstantopoulos, Stasinos; Karkaletsis, Vangelis; Dowling, Jim; Kakantousis, Theofilos; Datcu, Mihai; Yao, Wei; Dumitru, Corneliu Octavian; Appel, Florian; Migdall, Silke; Muerth, Markus; Bach, Heike; Hughes, Nick; Everett, Alistair; Kiærbech, Ashild; Pedersen, Joakim Lillehaug; Arthurs, David; Fleming, Andrew ORCID: https://orcid.org/0000-0002-0143-4527; Cziferszky, Andreas ORCID: https://orcid.org/0000-0002-1330-6733. 2021 Artificial Intelligence and big data technologies for Copernicus data: The EXTREMEEARTH project. In: Soille, P.; Loekken, S.; Albani, S., (eds.) Proceedings of the 2021 conference on Big Data from Space. Publications Office of the European Union.
Full text not available from this repository. (Request a copy)Abstract/Summary
ExtremeEarth is a three-year H2020 ICT research and innovation project. Its main objective is to develop Artificial Intelligence and big data technologies that scale to the large volumes of big Copernicus data, information and knowledge, and apply these technologies in two of the European Space Agency (ESA) Thematic Exploitation Platforms (TEP): Food Security and Polar.
Item Type: | Publication - Book Section |
---|---|
Digital Object Identifier (DOI): | 10.2760/125905 |
ISBN: | 978-92-76-37661-3 |
Additional Keywords: | ExtremeEarth, Earth Observation, Linked Geospatial Data, Artificial Intelligence, Deep Learning, Copernicus, Food Security, Polar Regions |
Date made live: | 14 Jun 2021 16:30 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/530505 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year