The ExtremeEarth software architecture for Copernicus earth observation data
Hagos, D.H.; Kakantousis, T.; Vlassov, V.; Sheikholeslami, S.; Wang, T.; Dowling, J.; Fleming, A. ORCID: https://orcid.org/0000-0002-0143-4527; Cziferszky, A. ORCID: https://orcid.org/0000-0002-1330-6733; Muerth, M.; Appel, F.; Pantazi, D-A.; Bilidas, D.; Papadakis, G.; Mandilaras, G.; Stamoulis, G.; Koubarakis, M.; Troumpoukis, A.; Konstantopoulos, S.. 2021 The ExtremeEarth software architecture for Copernicus earth observation data. In: Soille, P.; Loekken, S.; Albani, S., (eds.) Proceedings of the 2021 conference on Big Data from Space. Publications Office of the European Union, 4pp.
Before downloading, please read NORA policies.
Text
BIDS21_paper5.pdf Restricted to NORA staff only Download (654kB) | Request a copy |
Abstract/Summary
Current deep learning architectures for remote sensing are trained on small datasets typically using 1 GPU without taking advantage of new innovative approaches such as distributed scale-out deep learning. In this paper, we present the ExtremeEarth software architecture for Copernicus Earth Observation data. We show how we go beyond the state-of-the-art by scaling to the petabytes of data using Hopsworks and demonstrate our big data technologies in two Thematic Exploitation Platforms (TEPs): Food Security and Polar. Furthermore, we present the integration of Hopsworks with the Polar and Food Security use cases and the flow of events for the products offered through the TEPs.
Item Type: | Publication - Book Section |
---|---|
Digital Object Identifier (DOI): | 10.2760/125905 |
ISBN: | 978-92-76-37661-3 |
Additional Keywords: | Copernicus, ExtremeEarth, Hopsworks, Earth Observation, Linked Geospatial Data, Deep Learning |
Date made live: | 14 Jun 2021 16:14 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/530274 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year