Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

ULF wave driven radial diffusion during geomagnetic storms: A statistical analysis of Van Allen Probes observations

Sandhu, J.K.; Rae, I.J.; Wygant, J.R.; Breneman, A.W.; Tian, S.; Watt, C.E.J.; Horne, R.B. ORCID: https://orcid.org/0000-0002-0412-6407; Ozeke, L.G.; Georgiou, M.; Walach, M.‐T.. 2021 ULF wave driven radial diffusion during geomagnetic storms: A statistical analysis of Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 126 (4), e2020JA029024. 20, pp. 10.1029/2020JA029024

Abstract
The impact of radial diffusion in storm time radiation belt dynamics is well‐debated. In this study we quantify the changes and variability in radial diffusion coefficients during geomagnetic storms. A statistical analysis of Van Allen Probes data (2012 − 2019) is conducted to obtain measurements of the magnetic and electric power spectral densities for Ultra Low Frequency (ULF) waves, and corresponding radial diffusion coefficients. The results show global wave power enhancements occur during the storm main phase, and continue into the recovery phase. Local time asymmetries show sources of wave power are both external solar wind driving and internal sources from coupling with ring current ions and substorms. Wave power enhancements are also observed at low L values (L < 4). The accessibility of wave power to low L is attributed to a depression of the Alfvén continuum. The increased wave power drives enhancements in both the magnetic and electric field diffusion coefficients by more than an order of magnitude. Significant variability in diffusion coefficients is observed, with values ranging over several orders of magnitude. A comparison to the Kp parameterised empirical model of Ozeke et al. (2014) is conducted and indicates important differences during storm times. Although the electric field diffusion coefficient is relatively well described by the empirical model, the magnetic field diffusion coefficient is approximately ∼ 10 times larger than predicted. We discuss how differences could be attributed to dataset limitations and assumptions. Alternative storm‐time radial diffusion coefficients are provided as a function of L* and storm phase.
Documents
529942:172919
[thumbnail of Open Access]
Preview
Open Access
2020JA029024.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Space Weather and Atmosphere
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item