Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils

Vogel, Christian; Helfenstein, Julian; Massey, Michael S.; Sekine, Ryo; Kretzschmar, Ruben; Beiping, Luo; Peter, Thomas; Chadwick, Oliver A.; Tamburini, Federica; Rivard, Camille; Herzel, Hannes; Adam, Christian; Pradas del Real, Ana E.; Castillo-Michel, Hiram; Zuin, Lucia; Wang, Dongniu; Félix, Roberto; Lassalle-Kaiser, Benedikt; Frossard, Emmanuel. 2021 Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils. Geoderma, 381, 114681. 11, pp. 10.1016/j.geoderma.2020.114681

Abstract
Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 µm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to co-location with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition.
Documents
529503:168466
[thumbnail of N529503JA.pdf]
Preview
N529503JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (4MB) | Preview
Information
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item