Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

New magnetostratigraphic insights from Iceberg Alley on the rhythms of Antarctic climate during the Plio‐Pleistocene

Reilly, Brendan T.; Tauxe, Lisa; Brachfeld, Stefanie; Raymo, Maureen; Bailey, Ian; Hemming, Sidney; Weber, Michael E.; Williams, Trevor; Garcia, Marga; Guitard, Michelle; Martos, Yasmina M.; Pérez, Lara F. ORCID: https://orcid.org/0000-0002-6229-4564; Zheng, Xufeng; Armbrecht, Linda; Cardillo, Fabricio G.; Du, Zhiheng; Fauth, Gerson; Glueder, Anna; Gutjahr, Marcus; Hernández‐Almeida, Iván; Hoem, Frida S.; Hwang, Ji‐Hwan; Iizuka, Mutsumi; Kato, Yuji; Kenlee, Bridget; O’Connell, Suzanne; Peck, Victoria ORCID: https://orcid.org/0000-0002-7948-6853; Ronge, Thomas A.; Seki, Osamu; Tripathi, Shubham; Warnock, Jonathan. 2021 New magnetostratigraphic insights from Iceberg Alley on the rhythms of Antarctic climate during the Plio‐Pleistocene. Paleoceanography and Paleoclimatology, 36 (2), e2020PA003994. 27, pp. 10.1029/2020PA003994

Abstract
International Ocean Discovery Program (IODP) Expedition 382 in the Scotia Sea's “Iceberg Alley” recovered among the most continuous and highest resolution stratigraphic records in the Southern Ocean near Antarctica spanning the last 3.3 Myr. Sites drilled in Dove Basin (U1536/U1537) have well‐resolved magnetostratigraphy and a strong imprint of orbital forcing in their lithostratigraphy. All magnetic reversals of the last 3.3 Myr are identified, providing a robust age model independent of orbital tuning. During the Pleistocene, alternation of terrigenous versus diatomaceous facies show power in the eccentricity and obliquity frequencies comparable to the amplitude modulation of benthic δ18O records. This suggests that variations in Dove Basin lithostratigraphy during the Pleistocene reflect a similar history as globally integrated ice volume at these frequencies. However, power in the precession frequencies over the entire ∼3.3 Myr record does not match the amplitude modulation of benthic δ18O records, suggesting Dove Basin contains a unique record at these frequencies. Comparing the position of magnetic reversals relative to local facies changes in Dove Basin and the same magnetic reversals relative to benthic δ18O at North Atlantic IODP Site U1308, we demonstrate Dove Basin facies change at different times than benthic δ18O during intervals between ∼3‐1 Ma. These differences are consistent with precession phase shifts and suggests climate signals with a Southern Hemisphere summer insolation phase were recorded around Antarctica. If Dove Basin lithology reflects local Antarctic ice volume changes, these signals could represent ice sheet precession paced variations not captured in benthic δ18O during the 41‐kyr world.
Documents
529484:170024
[thumbnail of 2020PA003994.pdf]
Preview
2020PA003994.pdf - Published Version

Download (10MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Palaeo-Environments, Ice Sheets and Climate Change
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item