Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Hourly prediction of phytoplankton biomass and its environmental controls in lowland rivers

Pathak, Devanshi ORCID: https://orcid.org/0000-0003-3290-5149; Hutchins, Michael ORCID: https://orcid.org/0000-0003-3764-5331; Brown, Lee; Loewenthal, Matthew; Scarlett, Peter; Armstrong, Linda; Nicholls, David; Bowes, Michael ORCID: https://orcid.org/0000-0002-0673-1934; Edwards, Francois. 2021 Hourly prediction of phytoplankton biomass and its environmental controls in lowland rivers. Water Resources Research, 57 (3), e2020WR028773. 10.1029/2020WR028773

Abstract
High‐resolution river modeling is valuable to study diurnal scale phytoplankton dynamics and understand biomass response to short‐term, rapid changes in its environmental controls. Based on theory contained in the Quality Evaluation and Simulation Tool for River‐systems model, a new river model is developed to simulate hourly scale phytoplankton growth and its environmental controls, thus allowing to study diurnal changes thereof. The model is implemented along a 62 km stretch in a lowland river, River Thames (England), using high‐frequency water quality measurements to simulate flow, water temperature, dissolved oxygen, nutrients, and phytoplankton concentrations for 2 years (2013–2014). The model satisfactorily simulates diurnal variability and transport of phytoplankton with Nash and Sutcliffe Efficiency (NSE) > 0.7 at all calibration sites. Even without high‐frequency data inputs, the model performs satisfactorily with NSE > 0.6. The model therefore can serve as a powerful tool both for predictive purposes and for hindcasting past conditions when hourly resolution water quality monitoring is unavailable. Model sensitivity analysis shows that the model with cool water diatoms as dominant species with an optimum growth temperature of 14°C performs the best for phytoplankton prediction. Phytoplankton blooms are mainly controlled by residence time, light and water temperature. Moreover, phytoplankton blooms develop within an optimum range of flow (21–63 m3 s−1). Thus, lowering river residence time with short‐term high flow releases could help prevent major bloom developments. The hourly model improves biomass prediction and represents a step forward in high‐resolution phytoplankton modeling and consequently, bloom management in lowland river systems.
Documents
529399:170783
[thumbnail of N529399JA.pdf]
Preview
N529399JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Information
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item