Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Plant functional type indirectly affects peatland carbon fluxes and their sensitivity to environmental change

Whitaker, Jeanette ORCID: https://orcid.org/0000-0001-8824-471X; Richardson, Harriett R.; Ostle, Nicholas J.; Armstrong, Alona; Waldron, Susan. 2021 Plant functional type indirectly affects peatland carbon fluxes and their sensitivity to environmental change. European Journal of Soil Science, 72 (2). 1042-1053. 10.1111/ejss.13048

Abstract
The sensitivity of peatland carbon (C) fluxes to changes in climate and hydrology are uncertain due to the complex interactions between plants and peat properties. In this study we examine how peat cores taken from under three plant functional types (PFT) (bryophyte, graminoid and ericoid) differ in their biotic and abiotic properties and how this indirectly modulates the response of C fluxes to environmental change. Peat cores taken from under three PFTs had their aboveground vegetation removed to exclude direct plant‐mediated effects, and were incubated in a temperature × water table factorial experiment at 12, 14 and 16°C (air temperature) with the water table level −25, −15 or −5 cm below the peat surface. Carbon dioxide (CO2) and methane (CH4) fluxes were measured over 11 months. Emissions of CO2 and CH4 increased with temperature, with strong positive (CH4) and negative (CO2) interactions with increasing water table level. There were significant effects of removed PFT on the environmental sensitivity of CH4, but not CO2 fluxes. CH4 emissions were greatest in peat with graminoid PFT removed at the warmest temperature but these indirect effects were not explained by peat abiotic or biotic properties, which did not differ between PFTs. These results show that climate change‐induced expansion of graminoids in northern peatlands will have direct and indirect effects on C fluxes and the stability of peatland C stores. These responses will be determined by the interactive effects of vegetation composition, hydrology and warming on methane‐cycling microbial communities.
Documents
528725:170398
[thumbnail of N528725JA.pdf]
Preview
N528725JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Information
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item