Extreme temperatures in the Antarctic
Turner, John ORCID: https://orcid.org/0000-0002-6111-5122; Lu, Hua ORCID: https://orcid.org/0000-0001-9485-5082; King, John ORCID: https://orcid.org/0000-0003-3315-7568; Marshall, Gareth J. ORCID: https://orcid.org/0000-0001-8887-7314; Phillips, Tony ORCID: https://orcid.org/0000-0002-3058-9157; Bannister, Dan ORCID: https://orcid.org/0000-0002-2982-3751; Colwell, Steve. 2021 Extreme temperatures in the Antarctic. Journal of Climate, 34 (7). 2653-2668. https://doi.org/10.1175/JCLI-D-20-0538.1
Before downloading, please read NORA policies.
|
Text (Open Access)
© 2021 American Meteorological Society. [15200442 - Journal of Climate] Extreme Temperatures in the Antarctic.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (2MB) | Preview |
Abstract/Summary
We present the first Antarctic-wide analysis of extreme near-surface air temperatures based on data collected up to the end of 2019 as part of the synoptic meteorological observing programs. We consider temperatures at 17 stations on the Antarctic continent and nearby sub-Antarctic islands. We examine the frequency distributions of temperatures and the highest and lowest individual temperatures observed. The variability and trends in the number of extreme temperatures were examined via the mean daily temperatures computed from the 0, 6, 12 and 18 UTC observations, with the thresholds for extreme warm and cold days taken as the 5th and 95th percentiles. The five stations examined from the Antarctic Peninsula region all experienced a statistically significant increase (p < 0.01) in the number of extreme high temperatures in the late Twentieth Century part of their records, although the number of extremes decreased in subsequent years. For the period after 1979 we investigate the synoptic background to the extreme events using ECMWF ERA-Interim reanalysis fields. The majority of record high temperatures were recorded after the passage of airmasses over high orography, with the air being warmed by the Föhn effect. At some stations in coastal East Antarctica the highest temperatures were recorded after air with a high potential temperature descended from the Antarctic plateau, resulting in an airmass 5-7°C warmer than the maritime air. Record low temperatures at the Antarctic Peninsula stations were observed during winters with positive sea ice anomalies over the Bellingshausen and Weddell Seas.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1175/JCLI-D-20-0538.1 |
ISSN: | 0894-8755 |
Additional Keywords: | Atmosphere; Antarctica; Antarctic Oscillation; Climate variability; Temperature |
Date made live: | 18 Jan 2021 13:41 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/528167 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year