Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Ocean currents as a potential dispersal pathway for Antarctica’s most persistent non-native terrestrial insect

Bartlett, Jesamine C.; Convey, Peter ORCID: https://orcid.org/0000-0001-8497-9903; Hughes, Kevin ORCID: https://orcid.org/0000-0003-2701-726X; Thorpe, Sally ORCID: https://orcid.org/0000-0002-5193-6955; Hayward, S.A.L.. 2021 Ocean currents as a potential dispersal pathway for Antarctica’s most persistent non-native terrestrial insect. Polar Biology, 44 (2). 209-216. 10.1007/s00300-020-02792-2

Abstract
The non-native midge Eretmoptera murphyi is Antarctica’s most persistent non-native insect and is known to impact the terrestrial ecosystems. It inhabits by considerably increasing litter turnover and availability of soil nutrients. The midge was introduced to Signy Island, South Orkney Islands, from its native South Georgia, and routes of dispersal to date have been aided by human activities, with little known about non-human-assisted methods of dispersal. This study is the first to determine the potential for dispersal of a terrestrial invertebrate species in Antarctica by combining physiological sea water tolerance data with quantitative assessments of ocean current journey times. Fourth instar larvae tolerated sea water submergence for up to 21 days, but submerged egg sacs had significantly reduced hatching success. Using near-surface drifter data, we conclude that ocean current dispersal from Signy Island would not present a risk of species transfer beyond the South Orkney Islands on the tested timescales. However, if E. murphyi were to be introduced to the South Shetlands Islands or Adelaide Island, which are located offshore of the Antarctic Peninsula, there would be a risk of successful oceanic dispersal to neighbouring islands and the Antarctic Peninsula mainland. This study emphasises the need for effective biosecurity measures and demonstrates the role that currently undocumented pathways may have in dispersing non-native species.
Documents
526344:167767
[thumbnail of Open Access]
Preview
Open Access
Bartlett2021_Article_OceanCurrentsAsAPotentialDispe.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Biodiversity, Evolution and Adaptation
BAS Programmes 2015 > Ecosystems
BAS Programmes 2015 > Organisational
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item