Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Gravity waves in the winter stratosphere over the Southern Ocean: high-resolution satellite observations and 3-D spectral analysis

Hindley, Neil P.; Wright, Corwin J.; Smith, Nathan D.; Hoffman, Lars; Holt, Laura A.; Alexander, M. Joan; Moffat-Griffin, Tracy ORCID: https://orcid.org/0000-0002-9670-6715; Mitchell, Nicholas J.. 2019 Gravity waves in the winter stratosphere over the Southern Ocean: high-resolution satellite observations and 3-D spectral analysis. Atmospheric Chemistry and Physics, 19 (24). 15377-15414. 10.5194/acp-19-15377-2019

Abstract
Atmospheric gravity waves play a key role in the transfer of energy and momentum between layers of the Earth's atmosphere. However, nearly all Global Circulation Models (GCMs) seriously under-represent the momentum fluxes of gravity waves at latitudes near 60° S. This can result in modelled winter stratospheres that are unrealistically cold – a significant bias known as the "cold-pole problem". There is thus a need for measurements of gravity-wave fluxes near 60S to test and constrain GCMs. Such measurements are notoriously difficult, because they require 3-D observations of wave properties if the fluxes are to be estimated without using significant limiting assumptions. Here we use 3-D satellite measurements of stratospheric gravity waves from NASA's AIRS/Aqua instrument. We present the first extended application of a 3-D Stockwell transform (3DST) method to determine localised gravity-wave amplitudes, wavelengths and directions of propagation around the entire region of the Southern Ocean near 60° S during austral winter 2010. We first validate our method using a synthetic wave field and two case studies of real gravity waves over the Southern Andes and the island of South Georgia. A new technique to overcome wave amplitude attenuation problems in previous methods is also presented. We then characterise large-scale gravity-wave occurrence frequencies, directional momentum fluxes and short-timescale intermittency over the entire Southern Ocean. Our results show that highest wave-occurrence frequencies, amplitudes and momentum fluxes are observed in the stratosphere over the mountains of the Southern Andes and Antarctic Peninsula. However, we find that around 60–80 % of total zonal-mean momentum flux is located over the open Southern Ocean during June–August, where a large "belt" of increased wave-occurrence frequencies, amplitudes and fluxes is observed. Our results also suggest significant short-timescale variability of fluxes from both orographic and non-orographic sources in the region. A particularly striking result is a widespread convergence of gravity-wave momentum fluxes towards latitudes around 60° S from the north and south. We propose that this convergence, which is observed at nearly all longitudes during winter, accounts for a significant part of the under-represented flux in GCMs at these latitudes.
Documents
526118:151937
[thumbnail of Open Access]
Preview
Open Access
acp-19-15377-2019.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (19MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Atmosphere, Ice and Climate
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item