nerc.ac.uk

Using atmospheric model output to simulate the meteorological tsunami response to Tropical Storm Helene (2000)

Mecking, J. V.; Fogarty, C. T.; Greatbatch, R. J.; Sheng, J.; Mercer, D.. 2009 Using atmospheric model output to simulate the meteorological tsunami response to Tropical Storm Helene (2000). Journal of Geophysical Research, 114 (C10). 10.1029/2009JC005290

Full text not available from this repository.

Abstract/Summary

In the fall of both 1999 and 2000, unexpected “rapid tides” occurred along the coast of the Avalon Peninsula of Newfoundland. These rapid tides have been linked to the passing of Tropical Storm Jose (1999) and Tropical Storm Helene (2000) over the Grand Banks. Here we examine the dynamic ocean response to Tropical Storm Helene (2000) using a barotropic shallow water ocean model forced by atmospheric pressure and surface winds derived from a simulation of Helene using a dynamical model of the atmosphere. The ocean model is able to capture the main features of the observed response at the coast of Newfoundland as seen in the available tide gauge data. Results show that the simulated sea level response at the coast is driven by a combination of wind stress and atmospheric pressure forcing, the former generally dominating. An exception is Conception Bay, Newfoundland, where the response is captured mainly by atmospheric pressure forcing. Offshore near the edge of the Grand Banks, atmospheric pressure and wind stress forcing are equally important. The wind‐forced response depends on the divergence of the surface wind stress and hence on the structure of the storm in the atmospheric model simulation. Sensitivity studies show the importance of having a small time interval (on the order of minutes) at which the atmospheric forcing is supplied to the ocean model and show the importance of the location of the storm track.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1029/2009JC005290
ISSN: 0148-0227
Date made live: 21 Nov 2019 19:50 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/525955

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...