nerc.ac.uk

Impact of soil moisture on the development of a Sahelian mesoscale convective system: a case-study from the AMMA Special Observing Period

Taylor, Christopher M. ORCID: https://orcid.org/0000-0002-0120-3198; Harris, Phil P.; Parker, Douglas J.. 2010 Impact of soil moisture on the development of a Sahelian mesoscale convective system: a case-study from the AMMA Special Observing Period. Quarterly Journal of the Royal Meteorological Society, 136 (S1). 456-470. 10.1002/qj.465

Full text not available from this repository.

Abstract/Summary

Interactions between the land and atmosphere play an important role in the precipitation of the Sahel. The African Monsoon Multidisciplinary Analysis Special Observing Period provided observations with which to illuminate potential feedback mechanisms. This case study highlights a major storm which developed over northern Mali in an area where a research aircraft was surveying the atmospheric response to soil moisture features. Soil moisture variability is characterised using satellite land surface temperature data whilst cloud images illustrate the evolution of the storm and its relationship to the surface. Measurements in the Planetary Boundary Layer (PBL) indicate mesoscale variations in pre-storm humidity and temperature consistent with high evaporation from wet soils. The storm developed above a dry surface within a wetter region with cells first appearing along a wet-dry soil boundary. This suggests that the storm was triggered in association with low level convergence driven by the soil moisture pattern. A gravity wave propagating away from a remote mature storm also appears to have played an important role in the initiation, though only in the region of the soil moisture contrast did deep convection become established. Once organised into a Mesoscale Convective System, convection developed over wet areas as well as dry, and indeed at this stage, convection became more intense over wetter soils. This behaviour is consistent with the large gradients in PBL humidity. The study illustrates the complexity of soil moisture – convection feedback loops and highlights the mechanisms which may operate at different stages of a storm’s life cycle.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1002/qj.465
Programmes: CEH Programmes pre-2009 publications > Biogeochemistry > CC01B Land-surface Feedbacks in the Climate System > CC01.8 Land-surface feedbacks through energy and water cycles
CEH Topics & Objectives 2009 - 2012 > Biogeochemistry
UKCEH and CEH Sections/Science Areas: Harding (to July 2011)
ISSN: 0035-9009
Additional Information. Not used in RCUK Gateway to Research.: Click on the Official URL to access freely available full text
Additional Keywords: AMMA, land-atmosphere interaction, convective initiation, rainfall
NORA Subject Terms: Meteorology and Climatology
Hydrology
Date made live: 20 Apr 2010 12:06 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/5258

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...