nerc.ac.uk

Tectonic evolution and copper-gold metallogenesis of the Papua New Guinea and Solomon Islands region

Holm, Robert J.; Tapster, Simon; Jelsma, Hielke A.; Rosenbaum, Gideon; Mark, Darren F.. 2019 Tectonic evolution and copper-gold metallogenesis of the Papua New Guinea and Solomon Islands region. Ore Geology Reviews, 104. 208-226. 10.1016/j.oregeorev.2018.11.007

Before downloading, please read NORA policies.
[thumbnail of Holm_2018_OGR_Tectonicevolution_AAM.pdf]
Preview
Text
Holm_2018_OGR_Tectonicevolution_AAM.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (790kB) | Preview

Abstract/Summary

Papua New Guinea and the Solomon Islands are in one of the most prospective regions for intrusion-related mineral deposits. However, because of the tectonic complexity of the region and the lack of comprehensive regional geological datasets, the link between mineralization and the regional-scale geodynamic framework has not been understood. Here we present a new model for the metallogenesis of the region based on a synthesis of recent studies on the petrogenesis of magmatic arcs and the history of subduction zones throughout the region, combined with the spatio-temporal distribution of intrusion-related mineral deposits, and six new deposit ages. Convergence at the Pacific-Australia plate boundary was accommodated, from at least 45 Ma, by subduction at the Melanesian trench, with related Melanesian arc magmatism. The arrival of the Ontong Java Plateau at the trench at ca. 26 Ma resulted in cessation of subduction, immediately followed by formation of Cu-Au porphyry-epithermal deposits (at 24–20 Ma) throughout the Melanesian arc. Late Oligocene to early Miocene tectonic reorganization led to initiation of subduction at the Pocklington trough, and onset of magmatism in the Maramuni arc. The arrival of the Australian continent at the Pocklington trough by 12 Ma resulted in continental collision and ore deposit formation (from 12 to 6 Ma). This is represented by Cu-Au porphyry deposits in the New Guinea Orogen, and epithermal Au systems in the Papuan Peninsula. From 6 Ma, crustal delamination in Papua New Guinea, related to the prior Pocklington trough subduction resulted in adiabatic mantle melting with emplacement of diverse Cu and Au porphyry and epithermal deposits within the Papuan Fold and Thrust Belt and Papuan Peninsula from 6 Ma to the present day. Subduction at the New Britain and San Cristobal trenches from ca. 10 Ma resulted in an escalation in tectonic complexity and the onset of microplate tectonics in eastern Papua New Guinea and the Solomon Islands. This is reflected in the formation of diverse and discrete geodynamic settings for mineralization within the recent to modern arc setting, primarily related to upper plate shortening and extension and the spatial relationship to structures within the subducting slab.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1016/j.oregeorev.2018.11.007
ISSN: 01691368
Date made live: 25 Mar 2019 13:15 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/522644

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...