Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

The persistence of carbon in the African forest understory

Hubau, Wannes; De Mil, Tom; Van den Bulcke, Jan; Phillips, Oliver L.; Angoboy Ilondea, Bhély; Van Acker, Joris; Sullivan, Martin J.P.; Nsenga, Laurent; Toirambe, Benjamin; Couralet, Camille; Banin, Lindsay F. ORCID: https://orcid.org/0000-0002-1168-3914; Begne, Serge K.; Baker, Timothy R.; Bourland, Nils; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Comiskey, James A.; Cuni-Sanchez, Aida; Deklerck, Victor; Dierickx, Sofie; Doucet, Jean-Louis; Ewango, Corneille E.N.; Feldpausch, Ted R.; Gilpin, Martin; Gonmadje, Christelle; Hall, Jefferson S.; Harris, David J.; Hardy, Olivier J.; Kamdem, Marie-Noel D.; Kasongo Yakusu, Emmanuel; Lopez-Gonzalez, Gabriela; Makana, Jean-Remy; Malhi, Yadvinder; Mbayu, Faustin M.; Moore, Sam; Mukinzi, Jacques; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan; Rousseau, Mélissa; Sonké, Bonaventure; Sunderland, Terry; Taedoumg, Hermann; Talbot, Joey; Tshibamba Mukendi, John; Umunay, Peter M.; Vleminckx, Jason; White, Lee J.T.; Zemagho, Lise; Lewis, Simon L.; Beeckman, Hans. 2019 The persistence of carbon in the African forest understory. Nature Plants, 5 (2). 133-140. 10.1038/s41477-018-0316-5

Abstract
Quantifying carbon dynamics in forests is critical for understanding their role in long-term climate regulation. Yet little is known about tree longevity in tropical forests, a factor that is vital for estimating carbon persistence. Here we calculate mean carbon age (the period that carbon is fixed in trees7) in different strata of African tropical forests using (1) growth-ring records with a unique timestamp accurately demarcating 66 years of growth in one site and (2) measurements of diameter increments from the African Tropical Rainforest Observation Network (23 sites). We find that in spite of their much smaller size, in understory trees mean carbon age (74 years) is greater than in sub-canopy (54 years) and canopy (57 years) trees and similar to carbon age in emergent trees (66 years). The remarkable carbon longevity in the understory results from slow and aperiodic growth as an adaptation to limited resource availability. Our analysis also reveals that while the understory represents a small share (11%) of the carbon stock, it contributes disproportionally to the forest carbon sink (20%). We conclude that accounting for the diversity of carbon age and carbon sequestration among different forest strata is critical for effective conservation management and for accurate modelling of carbon cycling.
Documents
522620:139142
[thumbnail of N522620PP.pdf]
Preview
N522620PP.pdf - Accepted Version

Download (676kB) | Preview
Information
Programmes:
UKCEH and CEH Science Areas 2017-24 (Lead Area only) > Atmospheric Chemistry and Effects
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item