Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Physical conditions of fast glacier flow: 3. Seasonally-evolving ice deformation on Store Glacier, West Greenland

Young, Tun Jan; Christoffersen, P.; Doyle, S.H.; Nicholls, Keith W. ORCID: https://orcid.org/0000-0002-2188-4509; Stewart, C.L.; Hubbard, B.; Hubbard, A.; Lok, L.B.; Brennan, P.V.; Benn, D.I.; Luckman, A.; Bougamont, M.. 2019 Physical conditions of fast glacier flow: 3. Seasonally-evolving ice deformation on Store Glacier, West Greenland. Journal of Geophysical Research: Earth Surface, 124 (1). 245-267. 10.1029/2018JF004821

Abstract
Temporal variations in ice sheet flow directly impact the internal structure within ice sheets through englacial deformation. Large‐scale changes in the vertical stratigraphy within ice sheets have been previously conducted on centennial to millennial timescales; however, intra‐annual changes in the morphology of internal layers have yet to be explored. Over a period of two years, we use autonomous phase‐sensitive radio‐echo sounding (ApRES) to track the daily displacement of internal layers on Store Glacier, West Greenland to millimeter accuracy. At a site located ∼30 km from the calving terminus, where the ice is ∼600m thick and flows at ∼700m a−1, we measure distinct seasonal variations in vertical velocities and vertical strain rates over a two‐year period. Prior to the melt season (March–June), we observe increasingly non‐linear englacial deformation with negative vertical strain rates (i.e. strain thinning) in the upper half of the ice column of ∼‐0.03a−1, whereas the ice below thickens under vertical strain reaching up to 0.16a−1. Early in the melt season (June–July), vertical thinning gradually ceases as the glacier increasingly thickens. During late summer to midwinter (August–February), vertical thickening occurs linearly throughout the entire ice column, with strain rates averaging 0.016a−1. We show that these complex variations are unrelated to topographic setting and localized basal slip, and hypothesize that this seasonality is driven by far‐field perturbations in the glacier's force balance, in this case generated by variations in basal hydrology near the glacier's terminus and propagated tens of kilometers upstream through longitudinal coupling.
Documents
522065:138183
[thumbnail of Young_et_al-2019-Journal_of_Geophysical_Research__Earth_Surface.pdf]
Preview
Young_et_al-2019-Journal_of_Geophysical_Research__Earth_Surface.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (4MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Polar Oceans
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item