Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Soil N2O emissions with different reduced tillage methods during the establishment of Miscanthus in temperate grassland

Holder, Amanda J.; McCalmont, Jon P.; Rowe, Rebecca ORCID: https://orcid.org/0000-0002-7554-821X; McNamara, Niall P. ORCID: https://orcid.org/0000-0002-5143-5819; Elias, Dafydd ORCID: https://orcid.org/0000-0002-2674-9285; Donnison, Iain S.. 2019 Soil N2O emissions with different reduced tillage methods during the establishment of Miscanthus in temperate grassland. Global Change Biology Bioenergy, 11 (3). 539-549. 10.1111/gcbb.12570

Abstract
An increase in renewable energy and the planting of perennial bioenergy crops is expected in order to meet global greenhouse gas (GHG) targets. Nitrous oxide (N2O) is a potent greenhouse gas, and this paper addresses a knowledge gap concerning soil N2O emissions over the possible “hot spot” of land use conversion from established pasture to the biofuel crop Miscanthus. The work aims to quantify the impacts of this land use change on N2O fluxes using three different cultivation methods. Three replicates of four treatments were established: Miscanthus x giganteus (Mxg) planted without tillage; Mxg planted with light tillage; a novel seed‐based Miscanthus hybrid planted with light tillage under bio‐degradable mulch film; and a control of uncultivated established grass pasture with sheep grazing. Soil N2O fluxes were recorded every 2 weeks using static chambers starting from preconversion in April 2016 and continuing until the end of October 2017. Monthly soil samples were also taken and analysed for nitrate and ammonium. There was no significant difference in N2O emissions between the different cultivation methods. However, in comparison with the uncultivated pasture, N2O emissions from the cultivated Miscanthus plots were 550%–819% higher in the first year (April to December 2016) and 469%–485% higher in the second year (January to October 2017). When added to an estimated carbon cost for production over a 10 year crop lifetime (including crop management, harvest, and transportation), the measured N2O conversion cost of 4.13 Mg CO2‐eq./ha represents a 44% increase in emission compared to the base case. This paper clearly shows the need to incorporate N2O fluxes during Miscanthus establishment into assessments of GHG balances and life cycle analysis and provides vital knowledge needed for this process. This work therefore also helps to support policy decisions regarding the costs and benefits of land use change to Miscanthus.
Documents
521451:137677
[thumbnail of N521451JA.pdf]
Preview
N521451JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (724kB) | Preview
Information
Programmes:
UKCEH and CEH Science Areas 2017-24 (Lead Area only) > Soils and Land Use
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item