Pirrie, Duncan; Marshall, James D.. 1991 Field relationships and stable isotope geochemistry of concretions from James Ross Island, Antarctica. Sedimentary Geology, 71 (3-4). 137-150. 10.1016/0037-0738(91)90098-X
Abstract
Early diagenetic (precompactional) concretions are abundant throughout the Cretaceous-Tertiary Marambio Group Larsen Basin, Antarctica. Four distinct concretion types are recognised: (1) spherical-subspherical concretions: (2) sheet concretions; (3) fossil-nucleated concretions; and (4) concretionary burrow networks. All concretion types have a micritic to microsparry variably non-ferroan to ferroan calcite cement. Stable isotope analyses show a wide spread in both δ18O and δ13C. δ13C values are typically negative, ranging between –3.38 and –39.15%o (PDB) (usually –16 to 230%). δ18O ranges between –1.28 and –13.81% (PDB) with most of the values between –5 and –10%.
The δ13C signature is interpreted to represent carbon sourced from sulphate reduction and/or methane oxidation, with minor input from shell dissolution, and is consistent with a shallow burial, early diagenetic origin. A single mudstone hosted concretion has a δ18O composition indicative of precipitation of carbonate from seawater. The low δ18O signatures in the sandstone- and siltstone-hosted concretions are possibly due to early diagenetic modification of the pore water composition through volcaniclastic mineral dissolution/reprecipitation reactions and perhaps through input of meteoric water. Concretion distribution is related to (a) changes in sedimentation rate and (b) the dominance of diffusion on concretion cementation.
Documents
Full text not available from this repository.
(Request a copy)
Information
Programmes:
A Pre-2012 Programme
Library
Metrics
Altmetric Badge
Dimensions Badge
Share
![]() |
