Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

A general model for the helical structure of geophysical flows in channel bends

Azpiroz-Zabala, M.; Cartigny, M.J.B.; Sumner, E.J.; Clare, M.A. ORCID: https://orcid.org/0000-0003-1448-3878; Talling, P.J.; Parsons, D.R.; Cooper, C.. 2017 A general model for the helical structure of geophysical flows in channel bends. Geophysical Research Letters, 44 (23). 11,932-11,941. 10.1002/2017GL075721

Abstract
Meandering channels formed by geophysical flows (e.g., rivers and seafloor turbidity currents) include the most extensive sediment transport systems on Earth. Previous measurements from rivers show how helical flow at meander bends plays a key role in sediment transport and deposition. Turbidity currents differ from rivers in both density and velocity profiles. These differences, and the lack of field measurements from turbidity currents, have led to multiple models for their helical flow around bends. Here we present the first measurements of helical flow in submarine turbidity currents. These 10 flows lasted for 1–10 days, were up to ~80 m thick, and displayed a consistent helical structure. This structure comprised two vertically stacked cells, with the bottom cell rotating in the opposite direction to helical flow in rivers. Furthermore, we propose a general model that predicts the range of helical flow structures observed in rivers, estuaries, and turbidity currents based on their density stratification.
Documents
519219:123520
[thumbnail of Open Access paper]
Preview
Open Access paper
Azpiroz-Zabala_et_al-2017-Geophysical_Research_Letters.pdf - Published Version

Download (2MB) | Preview
Information
Programmes:
NOC Programmes > Marine Geoscience
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item