nerc.ac.uk

The transient response of ice-shelf melting to ocean change

Holland, Paul R. ORCID: https://orcid.org/0000-0001-8370-289X. 2017 The transient response of ice-shelf melting to ocean change. Journal of Physical Oceanography, 47 (8). 2101-2114. 10.1175/JPO-D-17-0071.1

Before downloading, please read NORA policies.
[thumbnail of Holland.pdf]
Preview
Text
Copyright American Meteorological Society
Holland.pdf - Published Version

Download (1MB) | Preview

Abstract/Summary

Idealised modelling studies have shown that the melting of ice shelves varies as a quadratic function of ocean temperature. However, this result is the equilibrium response, derived from steady ice— ocean simulations subjected to a fixed ocean forcing. This study considers instead the transient response of melting, using unsteady simulations subjected to forcing conditions that are oscillated with a range of periods. The results show that the residence time of water in the sub-ice cavity offers a critical timescale. When the forcing varies slowly (period of oscillation ≫ residence time), the cavity is fully-flushed with forcing anomalies at all stages of the cycle and melting follows the equilibrium response. When the forcing varies rapidly (period ≤ residence time), multiple cold and warm anomalies coexist in the cavity, cancelling each other in the spatial mean and thus inducing a relatively steady melt rate. This implies that all ice shelves have a maximum frequency of ocean variability that can be manifested in melting. Between these two extremes, an intermediate regime occurs in which melting follows the equilibrium response during the cooling phase of the forcing cycle, but deviates during warming. The results show that ice shelves forced by warm water have high melt rates, high equilibrium sensitivity, and short residence times, hence a short timescale over which the equilibrium sensitivity is manifest. The most rapid melting adjustment is induced by warm anomalies that are also saline. Thus, ice shelves in the Amundsen and Bellingshausen seas, Antarctica, are highly sensitive to ocean change

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1175/JPO-D-17-0071.1
Programmes: BAS Programmes > BAS Programmes 2015 > Polar Oceans
ISSN: 00223670
Additional Keywords: Antarctica, ice sheets, ice shelves, density currents, ocean models, oceanic variability
Date made live: 27 Jun 2017 08:52 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/517228

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...