Primary and secondary controls on reservoir quality: relationships between lithofacies and the development of deformation bands
Wakefield, Oliver; Hough, Edward; Clark, Karl D.. 2016 Primary and secondary controls on reservoir quality: relationships between lithofacies and the development of deformation bands. [Poster] In: America Association of Petroleum Geologists Annual Convention and Exhibition, Calgary, Canada, 19-22 June 2016. AAPG. (Unpublished)
Before downloading, please read NORA policies.Preview |
Text
AAPG_2016_POSTERS_Wakefield et al 2016 DEFORMATION.pdf Download (28MB) | Preview |
Abstract/Summary
Primary sedimentological processes in mixed eolian-fluvial systems can result in lithological variability at the sub-seismic scale. This variation in genetic origin has a direct control on the porosity and permeability of a body of sediment, with variations in lithofacies types, their assemblages and contacts responsible for creating fluid pathways or baffles. Post-depositional near-surface and deep process diagenesis affects original porosity and permeabilities through mineral dissolution and re-precipitation, and the generation of stress induced fractures. Examination of bedrock exposure and drillcore from the depositionally heterogeneous Triassic Sherwood Sandstone of north-west England demonstrates that there is a strong facies control on the presence and type of secondary processes, namely in the form of deformation bands. This is despite the entire range of lithofacies being subject to the same regional and local stresses. The mixed eolian-fluvial Sherwood Sandstone Group exhibits a wide range of facies types which allows a good insight in to those most susceptible to deformation band formation. Preliminary work indicates that the eolian grainfall and grainflow facies types are at most risk of being host to deformation bands above all other facies types (both eolian and fluvial). This is significant as both of these facies have very good permeabilities in excess of 6000 mD (millidarcy), whilst the deformation bands have significantly less ranging from 0.1-10 mD. The deformation bands are also identified to occur in a range of styles that vary from: i) isolated thin (1-2 mm thick) individual seams, ii) complex conjugate interlocking sets, and iii) chaotic thick amalgamations of multiple deformation bands ranging from 5-120 cm thick. Each of the deformation types has been constrained in three dimensions and a range of idealised conceptual models are presented that indicate the potential of effects on reservoir quality.
Item Type: | Publication - Conference Item (Poster) |
---|---|
Additional Keywords: | Sediments, Primary, Secondary, Reservoir Quality, Lithofacies, Deformation, Deformation Band, Cataclasite, Sherwood Sandstone, Triassic, Aquifer, Hydrocarbon |
NORA Subject Terms: | Earth Sciences |
Date made live: | 28 Apr 2017 15:43 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/516951 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year