Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

An assessment of non-geophysical effects in spaceborne GNSS Reflectometry data from the UK TechDemoSat-1 mission

Foti, Giuseppe ORCID: https://orcid.org/0000-0002-1507-2133; Gommenginger, Christine ORCID: https://orcid.org/0000-0002-6941-1671; Unwin, Martin; Jales, Philip; Tye, Jason; Roselló, Joseph. 2017 An assessment of non-geophysical effects in spaceborne GNSS Reflectometry data from the UK TechDemoSat-1 mission. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (7). 3418-3429. 10.1109/JSTARS.2017.2674305

Abstract
An assessment of non-geophysical effects in spaceborne global navigation satellite system reflectometry (GNSS-R) data from the UK TechDemoSat-1 (TDS-1) mission is presented. TDS-1 was launched in July 2014 and provides the first new spaceborne GNSS-R data since the pioneering UK-disaster monitoring constellation experiment in 2003. Non-geophysical factors evaluated include ambient L-band noise, instrument operating mode, and platform-related parameters. The findings are particularly relevant to users of uncalibrated GNSS-R signals for the retrieval of geophysical properties of the Earth surface. Substantial attitude adjustments of the TDS-1 platform are occasionally found to occur that introduce large uncertainties in parts of the TDS-1 GNSS-R dataset, particularly for specular points located outside the main beam of the nadir antenna where even small attitude errors can lead to large inaccuracies in the geophysical inversion. Out of eclipse however, attitude adjustments typically remain smaller than 1.5°, with larger deviations of up to 10° affecting less than 5% of the overall sun-lit data. Global maps of L1 ambient noise are presented for both automatic and programmed gain modes of the receiver, revealing persistent L-band noise hotspots along the Equator that can reach up to 2.5 dB, most likely associated with surface reflection of signals from other GNSS transmitters and constellations. Sporadic high-power noise events observed in certain regions point to sources of human origin. Relevant conclusions of this study are that platform attitude knowledge is essential and that radiometric calibration of GNSS-R signals should be used whenever possible. Care should be taken when considering using noise measurements over the equatorial oceans for calibration purposes, as ambient noise and correlated noise in delay–Doppler maps both show more variation than might be expected over these regions.
Documents
516400:117737
[thumbnail of Open Access paper]
Preview
Open Access paper
Foti_07936454.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
516400:111219
[thumbnail of FINAL VERSION_track_changes.pdf]
FINAL VERSION_track_changes.pdf - Accepted Version
Restricted to NORA staff only

Download (2MB)
Information
Programmes:
NOC Programmes > Marine Physics and Ocean Climate
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item