nerc.ac.uk

Characteristics of mesospheric gravity waves over Antarctica observed by Antarctic Gravity Wave Instrument Network imagers using 3-D spectral analyses

Matsuda, Takashi S.; Nakamura, Takuji; Ejiri, Mitsumu K; Tsutsumi, Masaki; Tomikawa, Yoshihiro; Taylor, Michael J.; Zhao, Yucheng; Pautet, P.-Dominique; Murphy, Damian J.; Moffat-Griffin, Tracy ORCID: https://orcid.org/0000-0002-9670-6715. 2017 Characteristics of mesospheric gravity waves over Antarctica observed by Antarctic Gravity Wave Instrument Network imagers using 3-D spectral analyses. Journal of Geophysical Research: Atmospheres, 122 (17). 8969-8981. 10.1002/2016JD026217

Before downloading, please read NORA policies.
[thumbnail of Matsuda_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.pdf]
Preview
Text
Matsuda_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (3MB) | Preview

Abstract/Summary

We have obtained horizontal phase velocity distributions of the gravity waves around 90 km from four Antarctic airglow imagers, which belong to an international airglow imager/instrument network known as ANGWIN (Antarctic Gravity Wave Instrument Network). Results from the airglow imagers at Syowa (69°S, 40°E), Halley (76°S, 27°W), Davis (69°S, 78°E) and McMurdo (78°S, 167°E) were compared, using a new statistical analysis method based on 3-D Fourier transform [Matsuda et al., 2014] for the observation period between 7 April and 21 May 2013. Significant day-to-day and site-to-site differences were found. The averaged phase velocity spectrum during the observation period showed preferential westward direction at Syowa, McMurdo and Halley, but no preferential direction at Davis. Gravity wave energy estimated by I’/I was ~5 times larger at Davis and Syowa than at McMurdo and Halley. We also compared the phase velocity spectrum at Syowa and Davis with the background wind field and found that the directionality only over Syowa could be explained by critical level filtering of the waves. This suggests that the eastward propagating gravity waves over Davis could have been generated above the polar night jet. Comparison of nighttime variations of the phase velocity spectra with background wind measurements suggested that the effect of critical level filtering could not explain the temporal variation of gravity wave directionality well, and other reasons such as variation of wave sources should be taken into account. Directionality was determined to be dependent on the gravity wave periods.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1002/2016JD026217
Programmes: BAS Programmes > BAS Programmes 2015 > Atmosphere, Ice and Climate
ISSN: 0148-0227
Additional Keywords: Antarctica, ANGWIN, airglow imaging, mesospheric gravity wave, spectral analysis, critical level filtering
Date made live: 17 Aug 2017 10:07 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/515188

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...