nerc.ac.uk

A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios

Jackson, Luke P.; Jevrejeva, Svetlana ORCID: https://orcid.org/0000-0001-9490-4665. 2016 A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios. Global and Planetary Change, 146. 179-189. 10.1016/j.gloplacha.2016.10.006

Before downloading, please read NORA policies.
[thumbnail of Open Access (CC-BY-NC-ND)]
Preview
Text (Open Access (CC-BY-NC-ND))
1-s2.0-S0921818116300686-main.pdf
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (2MB) | Preview

Abstract/Summary

Sea-level change is an integrated climate system response due to changes in radiative forcing, anthropogenic land-water use and land-motion. Projecting sea-level at a global and regional scale requires a subset of projections - one for each sea-level component given a particular climate-change scenario. We construct relative sea-level projections through the 21st century for RCP 4.5, RCP 8.5 and High-end (RCP 8.5 with increased ice-sheet contribution) scenarios by aggregating spatial projections of individual sea-level components in a probabilistic manner. Most of the global oceans adhere to the projected global average sea level change within 5 cm throughout the century for all scenarios; however coastal regions experience localised effects due to the non-uniform spatial patterns of individual components. This can result in local projections that are 10′s of centimetres different from the global average by 2100. Early in the century, RSL projections are consistent across all scenarios, however from the middle of the century the patterns of RSL for RCP scenarios deviate from the High-end where the contribution from Antarctica dominates. Similarly, the uncertainty in projected sea-level is dominated by an uncertain Antarctic fate. We also explore the effect upon projections of, treating CMIP5 model ensembles as normally distributed when they might not be, correcting CMIP5 model output for internal variability using different polynomials and using different unloading patterns of ice for the Greenland and Antarctic ice sheets.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1016/j.gloplacha.2016.10.006
ISSN: 09218181
Additional Keywords: Sea-level projection; Probability; Uncertainty; RCP scenarios; Climate change
Date made live: 15 Nov 2016 13:27 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/515156

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...