Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Morphodynamics of submarine channel inception revealed by new experimental approach

de Leeuw, Jan; Eggenhuisen, Joris T.; Cartigny, Matthieu J.B.. 2016 Morphodynamics of submarine channel inception revealed by new experimental approach. Nature Communications, 7. 10886. 10.1038/ncomms10886

Abstract
Submarine channels are ubiquitous on the seafloor and their inception and evolution is a result of dynamic interaction between turbidity currents and the evolving seafloor. However, the morphodynamic links between channel inception and flow dynamics have not yet been monitored in experiments and only in one instance on the modern seafloor. Previous experimental flows did not show channel inception, because flow conditions were not appropriately scaled to sustain suspended sediment transport. Here we introduce and apply new scaling constraints for similarity between natural and experimental turbidity currents. The scaled currents initiate a leveed channel from an initially featureless slope. Channelization commences with deposition of levees in some slope segments and erosion of a conduit in other segments. Channel relief and flow confinement increase progressively during subsequent flows. This morphodynamic evolution determines the architecture of submarine channel deposits in the stratigraphic record and efficiency of sediment bypass to the basin floor.
Documents
513545:97134
[thumbnail of Open Access paper]
Preview
Open Access paper
ncomms10886.pdf
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Information
Programmes:
NOC Programmes > Marine Geoscience
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item