Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Widespread biological response to recent rapid warming on the Antarctic Peninsula

Amesbury, Matthew J.; Roland, Thomas P.; Royles, Jessica ORCID: https://orcid.org/0000-0003-0489-6863; Hodgson, Dominic A. ORCID: https://orcid.org/0000-0002-3841-3746; Convey, Peter ORCID: https://orcid.org/0000-0001-8497-9903; Griffiths, Howard; Charman, Dan J.. 2017 Widespread biological response to recent rapid warming on the Antarctic Peninsula. Current Biology, 27 (11). 1616-1622. 10.1016/j.cub.2017.04.034

Abstract
Recent climate change on the Antarctic Peninsula is well documented [1, 2, 3, 4, 5], with warming, alongside increases in precipitation, wind strength, and melt season length [1, 6, 7], driving environmental change [8, 9]. However, meteorological records mostly began in the 1950s, and paleoenvironmental datasets that provide a longer-term context to recent climate change are limited in number and often from single sites [7] and/or discontinuous in time [10 , 11]. Here we use moss bank cores from a 600-km transect from Green Island (65.3°S) to Elephant Island (61.1°S) as paleoclimate archives sensitive to regional temperature change, moderated by water availability and surface microclimate [12, 13]. Mosses grow slowly, but cold temperatures minimize decomposition, facilitating multi-proxy analysis of preserved peat [14]. Carbon isotope discrimination (Δ13C) in cellulose indicates the favorability of conditions for photosynthesis [15]. Testate amoebae are representative heterotrophs in peatlands [16, 17 , 18], so their populations are an indicator of microbial productivity [14]. Moss growth and mass accumulation rates represent the balance between growth and decomposition [19]. Analyzing these proxies in five cores at three sites over 150 years reveals increased biological activity over the past ca. 50 years, in response to climate change. We identified significant changepoints in all sites and proxies, suggesting fundamental and widespread changes in the terrestrial biosphere. The regional sensitivity of moss growth to past temperature rises suggests that terrestrial ecosystems will alter rapidly under future warming, leading to major changes in the biology and landscape of this iconic region—an Antarctic greening to parallel well-established observations in the Arctic [20].
Documents
513421:116005
[thumbnail of Amesbury.pdf]
Preview
Amesbury.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Biodiversity, Evolution and Adaptation
BAS Programmes 2015 > Palaeo-Environments, Ice Sheets and Climate Change
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item