Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

A culture-independent and culture-dependent study of the bacterial community from the bedrock soil interface

Olsson-Francis, Karen; Boardman, Carl P.; Pearson, Victoria K.; Schofield, Paul F.; Oliver, Anna ORCID: https://orcid.org/0000-0003-4923-277X; Summers, Stephen. 2015 A culture-independent and culture-dependent study of the bacterial community from the bedrock soil interface. Advances in Microbiology, 5 (13). 842-857. 10.4236/aim.2015.513089

Abstract
In nutrient limited soils, minerals constitute a major reservoir of bio-essential elements. Consequently, the release of nutritive elements during weathering is crucial. Bacteria have been shown to enhance weathering rates; however, there has been limited work that has focused on the bacterial weathering of bedrock or parent rock, which are the major sources of minerals, in nutrient limiting soils. In this study, both a culture-independent and culture-dependent approach was used to study the bacterial community at the interface between basaltic bedrock and nutrient limiting soil in Cadiar Idris region of Snowdonia National Park, United Kingdom. High throughput sequencing method, Ion Torrent, was used to characterise the bacterial community, which generated over 250,000 sequences. Taxonomical assignment demonstrated that approximately 50% (125,000 sequences) of the community consisted of the orders Actinomycetales, Burkholderiales, Clostridales, Bacillales, Rhizobiales and Acidobacterium, with unclassified sequences representing 44% ± 1.46% (110,000 ± 3650). Bacteria belonging to the genera Serratia, Pseudomonas, Bacillus, Paenibacillus, Chromobacterium, Janthinobacterium, Burkholderia and Arthrobacter, were isolated from the sample site. All of the isolates were able to grow in a minimal growth medium, which contained glucose, ammonium chloride with basalt as the sole source of bio-essential elements. Seventy percent of the isolates significantly enhanced basalt dissolution (p < 0.05). The rate of dissolution correlated to the production of oxalic acid and acidification of the growth medium. The findings of this work suggest that at the interface between bedrock and soil heterotrophic members of the bacterial community can enhance weathering, an essential part of biogeochemical cycling in nutrient limiting soil.
Documents
513406:96485
[thumbnail of N513406JA.pdf]
Preview
N513406JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Information
Programmes:
CEH Science Areas 2013- > Ecological Processes & Resilience
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item