Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Metal speciation from stream to open ocean: modelling v. measurement

Tipping, Edward ORCID: https://orcid.org/0000-0001-6618-6512; Lofts, Stephen ORCID: https://orcid.org/0000-0002-3627-851X; Stockdale, Anthony. 2016 Metal speciation from stream to open ocean: modelling v. measurement [in special issue: Peter Campbell tribute] Environmental Chemistry, 13 (3). 464-477. 10.1071/EN15111

Abstract
We compiled a data set of ~2000 published metal speciation measurements made on samples of fresh waters, estuarine and coastal waters, and open ocean waters. For each sample, we applied the chemical speciation model WHAM7 to calculate the equilibrium free metal ion concentrations, [M] (mol L–1), amounts of metal bound by dissolved organic matter (DOM), ν (mol g–1), and their ratio ν/[M] (L g–1), which is a kind of ‘local’ partition coefficient. Comparison of the measured and predicted speciation variables for the whole data set showed that agreements are best for fresh waters, followed by estuarine and coastal waters, then open-ocean waters. Predicted values of ν/[M], averaged over all results for each metal, closely follow the trend in average measured values, confirming that metal reactivity, and consequent complexation by DOM, in natural waters accord with the expectations of the speciation model. Comparison of model predictions with measurements by different analytical techniques suggests that competitive ligand–stripping voltammetry methods overestimate metal complexation by DOM, and therefore underestimate [M]. When measurements by other methods are compared with predictions, for all metals, reasonable agreement with little bias is obtained at values of ν > 10–6 mol g–1 DOM, but at lower values of ν, the model predictions of [M] are mostly higher than the measured values, and the predictions of ν and ν/[M] are mostly lower. Research is needed to establish whether this reflects analytical error or the failure of the model to represent natural high-affinity ligands.
Documents
513119:99617
[thumbnail of N513119JA.pdf]
Preview
N513119JA.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (903kB) | Preview
Information
Programmes:
CEH Science Areas 2013- > Pollution & Environmental Risk
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item