Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Defining a simplified yet “realistic” equation of state for seawater

Roquet, Fabien; Madec, Gurvan; Brodeau, Laurent; Nycander, J.. 2015 Defining a simplified yet “realistic” equation of state for seawater. Journal of Physical Oceanography, 45 (10). 2564-2579. 10.1175/JPO-D-15-0080.1

Abstract
There is a growing realization that the nonlinear nature of the equation of state has a deep impact on the global ocean circulation; however, the understanding of the global effects of these nonlinearities remains elusive. This is partly because of the complicated formulation of the seawater equation of state making it difficult to handle in theoretical studies. In this paper, a hierarchy of polynomial equations of state of increasing complexity, optimal in a least squares sense, is presented. These different simplified equations of state are then used to simulate the ocean circulation in a global 2°-resolution configuration. Comparisons between simulated ocean circulations confirm that nonlinear effects are of major importance, in particular influencing the circulation through determination of the static stability below the mixed layer, thus controlling rates of exchange between the atmosphere and the ocean interior. It is found that a simple polynomial equation of state, with a quadratic term in temperature (for cabbeling), a temperature–pressure product term (for thermobaricity), and a linear term in salinity, that is, only four tuning parameters, is enough to simulate a reasonably realistic global circulation. The best simulation is obtained when the simplified equation of state is forced to have an accurate thermal expansion coefficient near the freezing point, highlighting the importance of polar regions for the global stratification. It is argued that this simplified equation of state will be of great value for theoretical studies and pedagogical purposes.
Documents
513019:93736
[thumbnail of jpo-d-15-0080%2E1.pdf]
Preview
jpo-d-15-0080%2E1.pdf - Published Version

Download (14MB) | Preview
Information
Programmes:
NOC Programmes > Marine Systems Modelling
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item