Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean

Jin, Meibing; Popova, Ekaterina E. ORCID: https://orcid.org/0000-0002-2012-708X; Zhang, Jinlun; Ji, Rubao; Pendleton, Daniel; Varpe, Øystein; Yool, Andrew ORCID: https://orcid.org/0000-0002-9879-2776; Lee, Younjoo J.. 2016 Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean. Journal of Geophysical Research: Oceans, 121 (1). 934-948. 10.1002/2015JC011183

Abstract
Previous observational studies have found increasing primary production (PP) in response to declining sea ice cover in the Arctic Ocean. In this study, under-ice PP was assessed based on three coupled ice-ocean-ecosystem models participating in the Forum for Arctic Modeling and Observational Synthesis (FAMOS) project. All models showed good agreement with under-ice measurements of surface chlorophyll-a concentration and vertically integrated PP rates during the main under-ice production period, from mid-May to September. Further, modeled 30-year (1980–2009) mean values and spatial patterns of sea ice concentration compared well with remote sensing data. Under-ice PP was higher in the Arctic shelf seas than in the Arctic Basin, but ratios of under-ice PP over total PP were spatially correlated with annual mean sea ice concentration, with higher ratios in higher ice concentration regions. Decreases in sea ice from 1980 to 2009 were correlated significantly with increases in total PP and decreases in the under-ice PP/total PP ratio for most of the Arctic, but nonsignificantly related to under-ice PP, especially in marginal ice zones. Total PP within the Arctic Circle increased at an annual rate of between 3.2 and 8.0 Tg C/yr from 1980 to 2009. This increase in total PP was due mainly to a PP increase in open water, including increases in both open water area and PP rate per unit area, and therefore much stronger than the changes in under-ice PP. All models suggested that, on a pan-Arctic scale, the fraction of under-ice PP declined with declining sea ice cover over the last three decades.
Documents
512767:95449
[thumbnail of jgrc21581.pdf]
Preview
jgrc21581.pdf - Published Version

Download (3MB) | Preview
Information
Programmes:
NOC Programmes > Marine Systems Modelling
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item