nerc.ac.uk

High-temporal resolution fluvial sediment source fingerprinting with uncertainty: a Bayesian approach

Cooper, Richard J.; Krueger, Tobias; Hiscock, Kevin M.; Rawlins, Barry G.. 2015 High-temporal resolution fluvial sediment source fingerprinting with uncertainty: a Bayesian approach. Earth Surface Processes and Landforms, 40 (1). 78-92. 10.1002/esp.3621

Before downloading, please read NORA policies.
[thumbnail of Open Access Paper]
Preview
Text (Open Access Paper)
esp3621.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract/Summary

This contribution addresses two developing areas of sediment fingerprinting research. Specifically, how to improve the temporal resolution of source apportionment estimates whilst minimizing analytical costs and, secondly, how to consistently quantify all perceived uncertainties associated with the sediment mixing model procedure. This first matter is tackled by using direct X-ray fluorescence spectroscopy (XRFS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses of suspended particulate matter (SPM) covered filter papers in conjunction with automatic water samplers. This method enables SPM geochemistry to be quickly, accurately, inexpensively and non-destructively monitored at high-temporal resolution throughout the progression of numerous precipitation events. We then employed a Bayesian mixing model procedure to provide full characterization of spatial geochemical variability, instrument precision and residual error to yield a realistic and coherent assessment of the uncertainties associated with source apportionment estimates. Applying these methods to SPM data from the River Wensum catchment, UK, we have been able to apportion, with uncertainty, sediment contributions from eroding arable topsoils, damaged road verges and combined subsurface channel bank and agricultural field drain sources at 60- and 120-minute resolution for the duration of five precipitation events. The results presented here demonstrate how combining Bayesian mixing models with the direct spectroscopic analysis of SPM-covered filter papers can produce high-temporal resolution source apportionment estimates that can assist with the appropriate targeting of sediment pollution mitigation measures at a catchment level.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1002/esp.3621
ISSN: 01979337
Date made live: 30 Mar 2015 15:17 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/510512

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...