Rudolph, S.; van der Kruk, J.; von Hebel, C.; Ali, M.; Herbst, M.; Montzka, C.; Patzold, S.; Robinson, D.A.
ORCID: https://orcid.org/0000-0001-7290-4867; Vereecken, H.; Weihermuller, L..
2015
Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements.
Geoderma, 241-242.
262-271.
10.1016/j.geoderma.2014.11.015
Abstract
Patterns in crop development and yield are often directly related to lateral and vertical changes in soil texture
causing changes in available water and resource supply for plant growth, especially under dry conditions. Relict
geomorphologic features, such as old river channels covered by shallow sediments can challenge assumptions of
uniformity in precision agriculture, subsurface hydrology, and crop modeling. Hence a better detection of these
subsurface structures is of great interest. In this study, the origins of narrow and undulating leaf area index
(LAI) patterns showing better crop performance in large scale multi-temporal satellite imagery were for the
first time interpreted by proximal soil sensor data. A multi-receiver electromagnetic induction (EMI) sensor measuring
soil apparent electrical conductivity (ECa) for six depths of exploration (DOE) ranging from 0–0.25 to
0–1.9 m was used as reconnaissance soil survey tool in combination with selected electrical resistivity tomography
(ERT) transects, and ground truth texture data to investigate lateral and vertical changes of soil properties at
ten arable fields. The moderate to excellent spatial consistency (R2 0.19–0.82) of ECa patterns and LAI crop marks that indicate a higher water storage capacity as well as the increased correlations between large-offset ECa data
and the subsoil clay content and soil profile depth, implies that along this buried paleo-river structure the subsoil is mainly responsible for better crop development in drought periods. Furthermore, observed stagnant water in
the subsoil indicates that this paleo-river structure still plays an important role in subsurface hydrology. These
insights should be considered and implemented in local hydrological as well as crop models.
Information
Programmes:
CEH Science Areas 2013- > Soil
Library
Statistics
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
![]() |
