Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models

King, J.C. ORCID: https://orcid.org/0000-0003-3315-7568; Gadian, A.; Kirchgaessner, A. ORCID: https://orcid.org/0000-0001-7483-3652; Kuipers Munneke, P.; Lachlan-Cope, T.A. ORCID: https://orcid.org/0000-0002-0657-3235; Orr, A. ORCID: https://orcid.org/0000-0001-5111-8402; Reijmer, C.; van den Broeke, M.R.; van Wessem, J.M.; Weeks, M.. 2015 Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models. Journal of Geophysical Research: Atmospheres, 120 (4). 1335-1347. 10.1002/2014JD022604

Abstract
We compare measurements of the turbulent and radiative surface energy fluxes from an automatic weather station (AWS) on Larsen C Ice Shelf, Antarctica with corresponding fluxes from three high-resolution atmospheric models over a one-month period during austral summer. All three models produce a reasonable simulation of the (relatively small) turbulent energy fluxes at the AWS site. However, biases in the modelled radiative fluxes, which dominate the surface energy budget, are significant. There is a significant positive bias in net shortwave radiation in all three models, together with a corresponding negative bias in net longwave radiation. In two of the models, the longwave bias only partially offsets the positive shortwave bias, leading to an excessive amount of energy available for heating and melting the surface, while, in the third, the negative longwave bias exceeds the positive shortwave bias, leading to a deficiency in calculated surface melt. Biases in shortwave and longwave radiation are anticorrelated, suggesting that they both result from the models simulating too little cloud (or clouds that are too optically thin). We conclude that, while these models may be able to provide some useful information on surface energy fluxes, absolute values of modelled melt rate are significantly biased and should be used with caution. Efforts to improve model simulation of melt should initially focus on the radiative fluxes and, in particular, on the simulation of the clouds that control these fluxes.
Documents
508513:80083
[thumbnail of jgrd51991.pdf]
Preview
jgrd51991.pdf - Published Version

Download (1MB) | Preview
Information
Programmes:
BAS Programmes 2012 > Climate
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item