Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

When phenology matters: age–size truncation alters population response to trophic mismatch

Ohlberger, Jan; Thackeray, Stephen J. ORCID: https://orcid.org/0000-0003-3274-2706; Winfield, Ian J. ORCID: https://orcid.org/0000-0001-9296-5114; Maberly, Stephen C. ORCID: https://orcid.org/0000-0003-3541-5903; Vøllestad, L. Asbjørn. 2014 When phenology matters: age–size truncation alters population response to trophic mismatch. Proceedings of the Royal Society of London, B, 281 (1793), 20140938. 7, pp. 10.1098/rspb.2014.0938

Abstract
Climate-induced shifts in the timing of life-history events are a worldwide phenomenon, and these shifts can de-synchronize species interactions such as predator–prey relationships. In order to understand the ecological implications of altered seasonality, we need to consider how shifts in phenology interact with other agents of environmental change such as exploitation and disease spread, which commonly act to erode the demographic structure of wild populations. Using long-term observational data on the phenology and dynamics of a model predator–prey system (fish and zooplankton in Windermere, UK), we show that age–size truncation of the predator population alters the consequences of phenological mismatch for offspring survival and population abundance. Specifically, age–size truncation reduces intraspecific density regulation due to competition and cannibalism, and thereby amplifies the population sensitivity to climate-induced predator–prey asynchrony, which increases variability in predator abundance. High population variability poses major ecological and economic challenges as it can diminish sustainable harvest rates and increase the risk of population collapse. Our results stress the importance of maintaining within-population age–size diversity in order to buffer populations against phenological asynchrony, and highlight the need to consider interactive effects of environmental impacts if we are to understand and project complex ecological outcomes.
Documents
508304:65895
[thumbnail of N508304JA.pdf]
Preview
N508304JA.pdf - Published Version
Available under License Creative Commons Attribution.

Download (485kB) | Preview
Information
Programmes:
CEH Science Areas 2013- > Ecological Processes & Resilience
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item