Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments

Hartman, Yorike; Hooftman, Danny A.P.; Uwimana, Brigitte; Schranz, M. Eric; van de Wiel, Clemens C.M.; Smulders, Marinus J.M.; Visser, Richard G.F.; Michelmore, Richard W.; van Tienderen, Peter H.. 2014 Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments. Ecology and Evolution, 4 (12). 2395-2409. 10.1002/ece3.1060

Abstract
The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance. We investigated abiotic stress QTL in greenhouse and field experiments in which we subjected Recombinant Inbred Lines from a cross between cultivated Lactuca sativa cv. Salinas and its wild relative L. serriola to drought, low nutrients, salt stress, and above ground competition. Aboveground biomass at the end of the rosette stage was used as a proxy for the performance of plants under a particular stress. We detected a mosaic of abiotic stress QTL over the entire genome with little overlap between QTL from different stresses. The two QTL clusters that were identified reflected general growth rather than specific stress responses and co-located with clusters found in earlier studies for leaf shape and flowering time. Genetic correlations across treatments were often higher among different stress treatments within the same experiment (greenhouse or field), than among the same type of stress applied in different experiments. Moreover, the effects of the field stress treatments were more correlated to those of the greenhouse competition treatments than to those of the other greenhouse stress experiments, suggesting that competition rather than abiotic stress is a major factor in the field. In conclusion, the introgression risk of stress tolerance (trans-)genes under field conditions cannot easily be predicted based on genomic background selection patterns from controlled QTL experiments in greenhouses. Especially field data will be needed to assess potential (negative) ecological effects of introgression of these transgenes into wild relatives.
Documents
505195:67097
[thumbnail of N505195JA.pdf]
Preview
N505195JA.pdf - Published Version
Available under License Creative Commons Attribution.

Download (488kB) | Preview
Information
Programmes:
CEH Science Areas 2013- > Ecological Processes & Resilience
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item