nerc.ac.uk

Mid-infrared spectroscopic assessment of nanotoxicity in Gram-negative vs. Gram-positive bacteria

Heys, Kelly A.; Riding, Matthew J.; Strong, Rebecca J.; Shore, Richard F.; Pereira, M. Gloria ORCID: https://orcid.org/0000-0003-3740-0019; Jones, Kevin C.; Semple, Kirk T.; Martin, Francis L.. 2014 Mid-infrared spectroscopic assessment of nanotoxicity in Gram-negative vs. Gram-positive bacteria. Analyst, 139 (5). 896-905. 10.1039/C3AN01649H

Before downloading, please read NORA policies.
[thumbnail of Kelly-nano(FLM)R1(BW).pdf]
Preview
Text
Kelly-nano(FLM)R1(BW).pdf - Accepted Version

Download (677kB) | Preview

Abstract/Summary

Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs. Infrared (IR) spectroscopy is a non-destructive, high throughput technique, which is unhindered by such problems. We explored the application of IR spectroscopy to investigate the effects of CBNs on Gram-negative (Pseudomonas fluorescens) and Gram-positive (Mycobacterium vanbaalenii PYR-1) bacteria. Two types of IR spectroscopy were compared: attenuated total reflection Fourier-transform infrared (ATR-FTIR) and synchrotron radiation-based FTIR (SR-FTIR) spectroscopy. This showed that Gram-positive and Gram-negative bacteria exhibit differing alterations when exposed to CBNs. Gram-positive bacteria appear more resistant to these agents and this may be due to the protection afforded by their more sturdy cell wall. Markers of exposure also vary according to Gram status; Amide II was consistently altered in Gram-negative bacteria and carbohydrate altered in Gram-positive bacteria. ATR-FTIR and SR-FTIR spectroscopy could both be applied to extract biochemical alterations induced by each CBN that were consistent across the two bacterial species; these may represent potential biomarkers of nanoparticle-induced alterations. Vibrational spectroscopy approaches may provide a novel means of fingerprinting the effects of CBNs in target cells.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1039/C3AN01649H
Programmes: CEH Topics & Objectives 2009 - 2012 > Biogeochemistry
UKCEH and CEH Sections/Science Areas: Shore
ISSN: 0003-2654
NORA Subject Terms: Ecology and Environment
Date made live: 28 Nov 2013 12:04 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/503975

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...