Growth in human population and demand for wealth creates ever-increasing pressure on
global soils, leading to soil losses and degradation worldwide. Critical Zone science studies
the impact linkages between these pressures, the resulting environmental state of soils,
and potential interventions to protect soil and reverse degradation. New research on soil
processes is being driven by the scientific hypothesis that soil processes can be described
along a life cycle of soil development. This begins with formation of new soil from parent
material, development of the soil profile, and potential loss of the developed soil functions
and the soil itself under overly intensive anthropogenic land use, thus closing the cycle.
Four Critical Zone Observatories in Europe have been selected focusing research at sites that represent key stages along the hypothetical soil life cycle; incipient soil formation,
productive use of soil for farming and forestry, and decline of soil due to longstanding
intensive agriculture. Initial results from the research show that soil develops important
biogeochemical properties on the time scale of decades and that soil carbon and the
development of favourable soil structure takes place over similar time scales. A new
mathematical model of soil aggregate formation and degradation predicts that set-aside
land at the most degraded site studied can develop substantially improved soil structure
with the accumulation of soil carbon over a period of several years. Further results
demonstrate the rapid dynamics of soil carbon; how quickly it can be lost, and also
demonstrate how data from the CZOs can be used to determine parameter values for
models at catchment scale. A structure for a new integrated Critical Zone model is
proposed that combines process descriptions of carbon and nutrient flows, a simplified
description of the soil food web, and reactive transport; all coupled with a dynamic model
for soil structure and soil aggregation. This approach is proposed as a methodology to
analyse data along the soil life cycle and test how soil processes and rates vary within, and
between, the CZOs representing different life cycle stages. In addition, frameworks are
discussed that will help to communicate the results of this science into a more policy
relevant format using ecosystem service approaches.