Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Phenology predicts the native and invasive range limits of common ragweed

Chapman, Daniel S.; Haynes, Tom; Beal, Stephen; Essl, Franz; Bullock, James M. ORCID: https://orcid.org/0000-0003-0529-4020. 2014 Phenology predicts the native and invasive range limits of common ragweed. Global Change Biology, 20 (1). 192-202. 10.1111/gcb.12380

Abstract
Accurate models for species’ distributions are needed to forecast the progress and impacts of alien invasive species and assess potential range-shifting driven by global change. Although this has traditionally been achieved through data-driven correlative modelling, robustly extrapolating these models into novel climatic conditions is challenging. Recently, a small number of process-based or mechanistic distribution models have been developed to complement the correlative approaches. However, tests of these models are lacking, and there are very few process-based models for invasive species. We develop a method for estimating the range of a globally-invasive species, common ragweed (Ambrosia artemisiifolia L.), from a temperature- and photoperiod-driven phenology model. The model predicts the region in which ragweed can reach reproductive maturity before frost kills the adult plants in autumn. This aligns well with the poleward and high-elevation range limits in its native North America and in invaded Europe, clearly showing that phenological constraints determine the cold range margins of the species. Importantly, this is a ‘forward’ prediction made entirely independently of the distribution data. Therefore, it allows a confident and biologically-informed forecasting of further invasion and range shifting driven by climate change. For ragweed, such forecasts are extremely important as the species is a serious crop weed and its airborne pollen is a major cause of allergy and asthma in humans. Our results show that phenology can be a key determinant of species’ range margins, so integrating phenology into species distribution models offers great potential for the mechanistic modelling of range dynamics.
Documents
503259:51387
[thumbnail of N503259PP.pdf]
Preview
N503259PP.pdf - Accepted Version

Download (1MB) | Preview
Information
Programmes:
CEH Science Areas 2013- > Natural Hazards
CEH Programmes 2012 > Biodiversity
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item