Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Superelevation and overspill control secondary flow dynamics in submarine channels

Dorrell, R.M.; Darby, S.E.; Peakall, J.; Sumner, E.J.; Parsons, D.R.; Wynn, R.B.. 2013 Superelevation and overspill control secondary flow dynamics in submarine channels. Journal of Geophysical Research: Oceans, 118 (8). 3895-3915. 10.1002/jgrc.20277

Abstract
In subaerial and submarine meander bends, fluid flow travels downstream in a helical spiral, the structure of which is determined by centrifugal, hydrostatic, baroclinic, and Coriolis forces that together balance frictional stresses generated by the flow. The sense of rotation of this helical flow, and in particular, whether the near bed flow is directed toward the inner bank, e.g., “river-normal,” or outer bank, e.g., “river-reversed,” is crucial to the morphodynamic evolution of the channel. However, in recent years, there has been a debate over the river-normal or river-reversed nature of submarine flows. Herein, we develop a novel three-dimensional closure of secondary flow dynamics, incorporating downstream convective material transport, to cast new light on this debate. Specifically, we show that the presence of net radial material transport, arising from flow superelevation and overspill, exerts a key control on the near bed orientation of secondary flow in submarine meanders. Our analysis implies that river-reversed flows are likely to be much more prevalent throughout submarine-canyon fan systems than prior studies have indicated.
Documents
502968:67982
[thumbnail of jgrc20277_Dorrell_2013.pdf]
Preview
jgrc20277_Dorrell_2013.pdf - Published Version

Download (1MB) | Preview
Information
Programmes:
NOC Programmes > Marine Geoscience
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item