Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Use of radium isotopes to estimate mixing rates and trace sediment inputs to surface waters in northern Marguerite Bay, Antarctic Peninsula

Annett, Amber L.; Henley, Sian F.; Van Beek, Pieter; Souhaut, Marc; Ganeshram, Raja; Venables, Hugh J. ORCID: https://orcid.org/0000-0002-6445-8462; Meredith, Michael P. ORCID: https://orcid.org/0000-0002-7342-7756; Geibert, Walter. 2013 Use of radium isotopes to estimate mixing rates and trace sediment inputs to surface waters in northern Marguerite Bay, Antarctic Peninsula. Antarctic Science, 25 (3). 445-456. 10.1017/S0954102012000892

Abstract
In the western Antarctic Peninsula region, micronutrient injection facilitates strong plankton blooms that support productive food webs, unlike large areas of the low-productivity Southern Ocean.We use naturally occurring radioisotopes of radium to constrain rates of chemical fluxes into Ryder Bay (a small coastal embayment in northern Marguerite Bay), and hence to evaluate possible sources of sediment-derived micronutrients and estimate sediment-ocean mixing rates. We present the first coupled, short-lived radium isotope (223Ra and 224Ra) measurements from Antarctic waters, both present at very low activities (mean 0.155 and 3.21 dpmm-3, respectively), indicating much lower radium inputs than in other coastal environments. Longer-lived 228Ra activity was also lower than existing nearshore values, but higher than open ocean waters, indicating some degree of coastal radium input on timescales exceeding the week-to-month range reflected by 223Ra and 224Ra. Using a simple diffusion model along a shore to mid-bay transect, effective horizontal eddy diffusivity estimates ranged from 0.22–0.83m2 s-1 from 223Ra and 224Ra, respectively, much lower than already-low mixing estimates for the Southern Ocean. Significant radium enrichment and much faster mixing (18m2 s-1) was found near a marine-terminating glacier and consequently any sediment-derived micronutrient inputs in this location are more probably dominated by glacial processes than groundwater, land runoff, or marine sediment sources.
Documents
500524:47994
[thumbnail of Copyright Antarctic Science Ltd.]
Preview
Copyright Antarctic Science Ltd.
-ANS-ANS25_03-S0954102012000892a.pdf - Published Version

Download (341kB) | Preview
Information
Programmes:
BAS Programmes 2012 > Polar Oceans
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item