Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Insights into the emplacement dynamics of volcanic landslides from high-resolution 3D seismic data acquired offshore Montserrat, Lesser Antilles

Crutchley, G.J.; Karstens, J.; Berndt, C.; Talling, P.J.; Watt, S.F.L.; Vardy, M.E.; Huhnerbach, V.; Urlaub, M.; Sarkar, S.; Klaeschen, D,; Paulatto, M.; Le Friant, A.; Lebas, E.; Maeno, F.. 2013 Insights into the emplacement dynamics of volcanic landslides from high-resolution 3D seismic data acquired offshore Montserrat, Lesser Antilles. Marine Geology, 335. 1-15. 10.1016/j.margeo.2012.10.004

Abstract
We present results from the first three-dimensional (3D) marine seismic dataset ever collected over volcanic landslide deposits, acquired offshore of the Soufrière Hills volcano on the island of Montserrat in the Lesser Antilles. The 3D data enable detailed analysis of various features in and around these mass wasting deposits, such as surface deformation fabrics, the distribution and size of transported blocks, change of emplacement direction and erosion into seafloor strata. Deformational features preserved on the surface of the most recent debris avalanche deposit (Deposit 1) reveal evidence for spatially-variant deceleration as the mass failure came to rest on the seafloor. Block distributions suggest that the failure spread out very rapidly, with no tendency to develop longitudinal ridges. An older volcanic flank collapse deposit (Deposit 2) appears to be intrinsically related to large-scale secondary failure of seafloor sediments. We observe pronounced erosion directly down-slope of a prominent headwall, where translational sliding of well-stratified sediments was initiated. Deep-reaching faults controlled the form and location of the headwall, and stratigraphic relationships suggest that sliding was concurrent with volcanic flank collapse emplacement. We also identified a very different mass wasting unit between Deposit 1 and Deposit 2 that was likely emplaced as a series of particle-laden mass flows derived from pyroclastic flows, much like the recent (since 1995) phase of deposition offshore Montserrat but at a much larger scale. This study highlights the power of 3D seismic data in understanding landslide emplacement processes offshore of volcanic islands.
Documents
Full text not available from this repository. (Request a copy)
Information
Programmes:
UNSPECIFIED
Library
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item