nerc.ac.uk

Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons—Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM)

Dash, Prasanjit; Ignatov, Alexander; Martin, Matthew; Donlon, Craig; Brasnett, Bruce; Reynolds, Richard W.; Banzon, Viva; Beggs, Helen; Cayula, Jean-Francois; Chao, Yi; Grumbine, Robert; Maturi, Eileen; Harris, Andy; Mittaz, Jonathan; Sapper, John; Chin, Toshio M.; Vazquez-Cuervo, Jorge; Armstrong, Edward M.; Gentemann, Chelle; Cummings, James; Piollé, Jean-François; Autret, Emmanuelle; Roberts-Jones, Jonah; Ishizaki, Shiro; Høyer, Jacob L.; Poulter, Dave. 2012 Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons—Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM). Deep Sea Research Part II Topical Studies in Oceanography, 77-80. 31-43. 10.1016/j.dsr2.2012.04.002

Full text not available from this repository. (Request a copy)

Abstract/Summary

There are a growing number of level 4 (L4; gap-free gridded) sea surface temperature (SST) products generated by blending SST data from various sources which are available for use in a wide variety of operational and scientific applications. In most cases, each product has been developed for a specific user community with specific requirements guiding the design of the product. Consequently differences between products are implicit. In addition, anomalous atmospheric conditions, satellite operations and production anomalies may occur which can introduce additional differences. This paper describes a new web-based system called the L4 SST Quality Monitor (L4-SQUAM) developed to monitor the quality of L4 SST products. L4-SQUAM intercompares thirteen L4 products with 1-day latency in an operational environment serving the needs of both L4 SST product users and producers. Relative differences between products are computed and visualized using maps, histograms, time series plots and Hovmöller diagrams, for all combinations of products. In addition, products are compared to quality controlled in situ SST data (available from the in situ SST Quality Monitor, iQUAM, companion system) in a consistent manner. A full history of products statistics is retained in L4-SQUAM for time series analysis. L4-SQUAM complements the two other Group for High Resolution SST (GHRSST) tools, the GHRSST Multi Product Ensemble (GMPE) and the High Resolution Diagnostic Data Set (HRDDS) systems, documented in part 1 of this paper and elsewhere, respectively. Our results reveal significant differences between SST products in coastal and open ocean areas. Differences of >2 °C are often observed at high latitudes partly due to different treatment of the sea-ice transition zone. Thus when an ice flag is available, the intercomparisons are performed in two ways: including and excluding ice-flagged grid points. Such differences are significant and call for a community effort to understand their root cause and ensure consistency between SST products. Future work focuses on including the remaining daily L4 SST products, accommodating for newer L4 SSTs which resolve the diurnal variability and evaluating retrospectively regenerated L4 SSTs to support satellite data reprocessing efforts aimed at generating improved SST Climate Data Records.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1016/j.dsr2.2012.04.002
Programmes: NOC Programmes
ISSN: 09670645
Additional Keywords: Sea surface temperature; Intercomparison; Climate data; Sea ice; Data centers
Date made live: 18 Sep 2012 15:09 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/442968

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...