Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves
Summers, Danny; Ni, Binbin; Meredith, Nigel P. ORCID: https://orcid.org/0000-0001-5032-3463. 2007 Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. Journal of Geophysical Research, 112 (A4), A04207. 21, pp. 10.1029/2006JA011993
Full text not available from this repository. (Request a copy)Abstract/Summary
Outer zone radiation belt electrons can undergo gyroresonant interaction with various magnetospheric wave modes including whistler-mode chorus outside the plasmasphere and both whistler-mode hiss and electromagnetic ion cyclotron (EMIC) waves inside the plasmasphere. To evaluate timescales for electron momentum diffusion and pitch angle diffusion, we utilize bounce-averaged quasi-linear diffusion coefficients for field-aligned waves with a Gaussian frequency spectrum in a dipole magnetic field. Timescales for momentum diffusion of MeV electrons due to VLF chorus can be less than a day in the outer radiation belt. Equatorial chorus waves (∣λ W ∣ < 15 deg) can effectively accelerate MeV electrons. Efficiency of the chorus acceleration mechanism is increased if high-latitude waves (∣λ W ∣ > 15 deg) are also present. Our calculations confirm that chorus diffusion is a viable mechanism for generating relativistic (MeV) electrons in the outer zone during the recovery phase of a storm or during periods of prolonged substorm activity when chorus amplitudes are enhanced. Radiation belt electrons are subject to precipitation loss to the atmosphere due to resonant pitch angle scattering by plasma waves. The electron precipitation loss timescale due to scattering by each of the wave modes, chorus, hiss, and EMIC waves, can be 1 day or less. These wave modes can separately, or in combination, contribute significantly to the depletion of relativistic (MeV) electrons from the outer zone over the course of a magnetic storm. Efficient pitch angle scattering by whistler-mode chorus or hiss typically requires high latitude waves (∣λ W ∣ > 30 deg). Timescales for electron acceleration and loss generally depend on the spectral properties of the waves, as well as the background electron number density and magnetic field. Loss timescales due to EMIC wave scattering also depend on the ion (H+, He+, O+) composition of the plasma. Complete models of radiation belt electron transport, acceleration and loss should include, in addition to radial (cross-L) diffusion, resonant diffusion due to gyroresonance with VLF chorus, plasmaspheric hiss, and EMIC waves. Comprehensive observational data on the spectral properties of these waves are required as a function of spatial location (L, MLT, MLAT) and magnetic activity.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1029/2006JA011993 |
Programmes: | BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Sun Earth Connections |
ISSN: | 0148-0227 |
Additional Keywords: | electron acceleration and loss; radiation belt electrons; wave-particle interactions |
NORA Subject Terms: | Space Sciences |
Date made live: | 27 May 2008 11:13 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/3117 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year