nerc.ac.uk

Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity

Henson, S.A. ORCID: https://orcid.org/0000-0002-3875-6802; Sarmiento, J.L.; Dunne, J.P.; Bopp, L.; Lima, I.; Doney, S.C.; John, J.; Beaulieu, C.. 2010 Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7. 621-640. 10.5194/bg-7-621-2010

Full text not available from this repository. (Request a copy)

Abstract/Summary

Global climate change is predicted to alter the ocean’s biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on its global distribution comes from satellite ocean colour data. Now that over ten years of satellite-derived chlorophyll and productivity data have accumulated, can we begin to detect and attribute climate change-driven trends in productivity? Here we compare recent trends in satellite ocean colour data to longer-term time series from three biogeochemical models (GFDL, IPSL and NCAR). We find that detection of climate change-driven trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity. Thus, recent observed changes in chlorophyll, primary production and the size of the oligotrophic gyres cannot be unequivocally attributed to the impact of global climate change. Instead, our analyses suggest that a time series of 40 years length is needed to distinguish a global warming trend from natural variability. In some regions, notably equatorial regions, detection times are predicted to be shorter ( 20−30 years). Analysis of modelled chlorophyll and primary production from 2001–2100 suggests that, on average, the climate change-driven trend will not be unambiguously separable from decadal variability until 2055. Because the magnitude of natural variability in chlorophyll and primary production is larger than, or similar to, the global warming trend, a consistent, decadeslong data record must be established if the impact of climate change on ocean productivity is to be definitively detected.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.5194/bg-7-621-2010
ISSN: 1726-4170
Related URLs:
Date made live: 24 May 2010 10:29 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/254065

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...