nerc.ac.uk

The state and future of Mars polar science and exploration

Clifford, Stephen M.; Crisp, David; Fisher, David A.; Herkenhoff, Ken E.; Smrekar, Suzanne E.; Thomas, Peter C.; Wynn-Williams, David D.; Zurek, Richard W.; Barnes, Jeffrey R.; Bills, Bruce G.; Blake, Erik W.; Calvin, Wendy M.; Cameron, Jonathan M.; Carr, Michael H.; Christensen, Philip R.; Clark, Benton C.; Clow, Gary D.; Cutts, James A.; Dahl-Jensen, Dorthe; Durham, William B.; Fanale, Fraser P.; Farmer, Jack D.; Forget, Francois; Gotto-Azuma, Kumiko; Grard, Rejean; Haberle, Robert M.; Harrison, William; Harvey, Ralph; Howard, Alan D.; Ingersoll, Andy P.; James, Philip B.; Kargel, Jeffrey S.; Kieffer, Hugh H.; Larsen, Janus; Lepper, Kenneth; Malin, Michael C.; McCleese, Daniel J.; Murray, Bruce; Nye, John F.; Paige, David A.; Platt, Stephen R.; Plaut, Jeff J.; Reeh, Niels; Rice, James W.; Smith, David E.; Stoker, Carol R.; Tanaka, Kenneth L.; Mosley-Thompson, Ellen; Thorsteinsson, Thorsteinn; Wood, Stephen E.; Zent, Aaron; Zuber, Maria T.; Zwally, H. Jay. 2000 The state and future of Mars polar science and exploration. Icarus, 144 (2). 210-242. 10.1006/icar.1999.6290

Full text not available from this repository. (Request a copy)

Abstract/Summary

As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of ∼106 km2 and total as much as 3–4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to be comparatively young—preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past ∼105–108 years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet—documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason—providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Marspolar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1006/icar.1999.6290
Programmes: BAS Programmes > Pre 2000 programme
ISSN: 00191035
Date made live: 19 Nov 2012 09:03 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/20442

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...