An assessment of geochemical preparation methods prior to organic carbon concentration and carbon isotope ratio analyses of fine-grained sedimentary rocks
Konitzer, Sven F.; Leng, Melanie J. ORCID: https://orcid.org/0000-0003-1115-5166; Davies, Sarah J.; Stephenson, Michael H.. 2012 An assessment of geochemical preparation methods prior to organic carbon concentration and carbon isotope ratio analyses of fine-grained sedimentary rocks. Geochemistry, Geophysics, Geosystems, 13, Q0AI02. 10.1029/2012GC004094
Before downloading, please read NORA policies.Preview |
Text
2012GC004094.pdf Download (940kB) | Preview |
Abstract/Summary
This study summarizes organic carbon isotope (δ13C) and total organic carbon (TOC) data from a series of tests undertaken to provide an appropriate methodology for pre-analysis treatment of mudstones from an Upper Carboniferous sedimentary succession, in order to develop a consistent preparation procedure. The main treatments involved removing both inorganic carbonate and hydrocarbons (which might be extraneous) before δ13C and TOC analysis. The results show that decarbonating using hydrochloric acid causes significant reduction in δ13C and total carbon (TC) of the bulk material due to the removal of inorganic carbonate. These changes are most pronounced where soluble calcium carbonate (rather than Ca-Mg-Fe carbonate) is present. Deoiled samples show only slightly higher mean δ13C where visible bitumen was extracted from the bulk sample. Moreover, the isotopic signatures of the extracts are closely correlated to those of their respective bulk samples, suggesting that small yields of hydrocarbons were generated in situ with no isotopic fractionation. In addition, further δ13C and TC analyses were performed on samples where mixing of oil-based drilling mud with brecciated core material had been undertaken. Brecciated mudstone material did not display distinct isotopic signals compared to the surrounding fine-grained material. Overall we show that the most accurate assessment of bulk organic carbon isotopes and concentration in these samples can be achieved through decarbonating the material prior to measurement via the ‘rinse method’. However, our results support recent findings that pre-analysis acid treatments can cause variable and unpredictable errors in δ13C and TOC values. We believe that, despite these uncertainties, the findings presented here can be applied to paleoenvironmental studies on organic matter contained within sedimentary rocks over a range of geological ages and compositions.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1029/2012GC004094 |
Programmes: | BGS Programmes 2010 > Energy Science |
ISSN: | 1525-2027 |
Date made live: | 09 Oct 2012 08:59 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/19897 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year