Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene-Eocene transition
Kender, Sev; Stephenson, Michael H.; Riding, James B. ORCID: https://orcid.org/0000-0002-5529-8989; Leng, Melanie J. ORCID: https://orcid.org/0000-0003-1115-5166; Knox, Robert W.O'B.; Peck, Victoria L. ORCID: https://orcid.org/0000-0002-7948-6853; Kendrick, Christopher P.; Ellis, Michael A.; Vane, Christopher H. ORCID: https://orcid.org/0000-0002-8150-3640; Jamieson, Rachel. 2012 Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene-Eocene transition. Earth & Planetary Science Letters, 353-54. 108-120. 10.1016/j.epsl.2012.08.011
Before downloading, please read NORA policies.Preview |
Text
Kender_et_al_2012_paper_submission.pdf Download (4MB) | Preview |
Abstract/Summary
Environmental changes associated with the Paleocene–Eocene thermal maximum (PETM, ∼56 Ma) have not yet been documented in detail from the North Sea Basin. Located within proximity to the North Atlantic igneous province (NAIP), the Kilda Basin, and the northern rain belt (paleolatitude 54 °N) during the PETM, this is a critical region for testing proposed triggers of atmospheric carbon release that may have caused the global negative carbon isotope excursion (CIE) in marine and terrestrial environments. The CIE onset is identified from organic matter δ13C in exceptional detail within a highly expanded sedimentary sequence. Pollen and spore assemblages analysed in the same samples for the first time allow a reconstruction of possible changes to vegetation on the surrounding landmass. Multiproxy palynological, geochemical, and sedimentologic records demonstrate enhanced halocline stratification and terrigenous deposition well before (103 yrs) the CIE, interpreted as due to either tectonic uplift possibly from a nearby magmatic intrusion, or increased precipitation and fluvial runoff possibly from an enhanced hydrologic cycle. Stratification and terrigenous deposition increased further at the onset and within the earliest CIE which, coupled with evidence for sea level rise, may be interpreted as resulting from an increase in precipitation over NW Europe consistent with an enhanced hydrologic cycle in response to global warming during the PETM. Palynological evidence indicates a flora dominated by pollen from coastal swamp conifers before the CIE was abruptly replaced with a more diverse assemblage of generalist species including pollen similar to modern alder, fern, and fungal spores. This may have resulted from flooding of coastal areas due to relative sea level rise, and/or ecologic changes forced by climate. A shift towards more diverse angiosperm and pteridophyte vegetation within the early CIE, including pollen similar to modern hickory, documents a long term change to regional vegetation.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1016/j.epsl.2012.08.011 |
Programmes: | BGS Programmes 2010 > Climate Change Science BAS Programmes > Polar Science for Planet Earth (2009 - ) > Chemistry and Past Climate |
ISSN: | 0012-821X |
Additional Information. Not used in RCUK Gateway to Research.: | Erratum to “Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition” [Earth Planet. Sci. Lett. 353–354 (2013) 108–120] Earth and Planetary Science Letters, Volume 374, 15 July 2013, Page 260 |
Related URLs: | |
Date made live: | 09 Oct 2012 08:49 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/19896 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year