N14C: A plant-soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition
Tipping, E. ORCID: https://orcid.org/0000-0001-6618-6512; Rowe, E.C. ORCID: https://orcid.org/0000-0003-4784-7236; Evans, C.D. ORCID: https://orcid.org/0000-0002-7052-354X; Mills, R.T.E.; Emmett, B.A. ORCID: https://orcid.org/0000-0002-2713-4389; Chaplow, J.S. ORCID: https://orcid.org/0000-0002-8058-8697; Hall, J.R.. 2012 N14C: A plant-soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition. Ecological Modelling, 247. 11-26. 10.1016/j.ecolmodel.2012.08.002
Before downloading, please read NORA policies.Preview |
Text
N019678PP.pdf - Accepted Version Download (350kB) | Preview |
Preview |
Text
Supplementary Material.pdf - Accepted Version Download (502kB) | Preview |
Abstract/Summary
The dynamic model N14C simulates changes in the plant–soil dynamics of nitrogen and carbon, brought about by the anthropogenic deposition of nitrogen. The model operates with four plant functional types; broadleaved and coniferous trees, herbs and dwarf shrubs. It simulates net primary production (NPP), C and N pools, leaching of dissolved organic carbon and nitrogen (DOC, DON) and inorganic nitrogen, denitrification, and the radiocarbon contents of organic matter, on an annual timestep. Soil organic matter (SOM) comprises three pools, undergoing first-order decomposition reactions with turnover rates ranging from c. 2 to c. 1000 years. Nitrogen immobilisation by SOM occurs if inorganic N remains after plant uptake, and leaching of inorganic N occurs if the immobilisation demand is met. SOM accumulates in the deeper soil by transport and sorption of DOM. Element soil pools accumulate with N inputs by fixation from 12,000 years ago until 1800, when anthropogenic N deposition begins. We describe the parameterisation of N14C with data from 42 published plot studies carried out in northern Europe, plus more general information on N deposition trends, soil radiocarbon, N fixation and denitrification. A general set of 12 parameters describing litter fractionation, N immobilisation, growing season length, DOC and DON leaching, denitrification and NH4 retention was derived by fitting the field data. This provided fair agreements between observations and simulations, which were appreciably improved by moderate (±20%) adjustments of the parameters for specific sites. The parameterised model gives reasonable blind predictions of ecosystem C and N variables from only temperature, precipitation, N deposition, and vegetation type. The results suggest an approximate doubling of NPP due to N deposition, although the majority of the sites remain N-limited. For a given N deposition, leaching rates of inorganic N at conifer and shrub sites exceed those at broadleaf and herb sites.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1016/j.ecolmodel.2012.08.002 |
Programmes: | CEH Topics & Objectives 2009 - 2012 > Biogeochemistry > BGC Topic 2 - Biogeochemistry and Climate System Processes > BGC - 2.1 - Quantify & model processes that control the emission, fate and bioavailability of pollutants |
UKCEH and CEH Sections/Science Areas: | Emmett Shore |
ISSN: | 0304-3800 |
Additional Information. Not used in RCUK Gateway to Research.: | This document is the author’s version of a work that was accepted for publication in Ecological Modelling. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ecological Modelling, 247. 11-26. 10.1016/j.ecolmodel.2012.08.002 |
Additional Keywords: | atmospheric deposition, carbon, leaching, NPP, nitrogen, radiocarbon, soil, turnover |
NORA Subject Terms: | Ecology and Environment |
Date made live: | 24 Sep 2012 11:35 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/19678 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year