nerc.ac.uk

Comparison of surface wave techniques to estimate shear wave velocity in a sand and gravel sequence : Holme-Pierrepont, Nottingham, UK

Gunn, D.A.; Williams, G.; Raines, M.G.; Busby, J.P.; Williams, J.D.O.; Pearson, S.G.. 2012 Comparison of surface wave techniques to estimate shear wave velocity in a sand and gravel sequence : Holme-Pierrepont, Nottingham, UK. Quarterly Journal of Engineering Geology and Hydrogeology, 45 (2). 139-160. 10.1144/​1470-9236/​11-004

Before downloading, please read NORA policies.
[thumbnail of Gunn_et_al-QJEGH-2011.pdf]
Preview
Text
Gunn_et_al-QJEGH-2011.pdf

Download (6MB) | Preview

Abstract/Summary

This study evaluated the application of surface wave methods to aggregate variability and thickness determinations. We compared the results of field assessments of sand and gravel sequences using three surface wave survey approaches. The first was a seismic refraction approach, the second, a continuous surface wave (CSW) survey approach, and the third adopted a multi-channel analysis of surface waves (MASW) technique to the original refraction field set-up and records. The sand and gravel sequences were highly heterogeneous and the shear wave profiles were not normally dispersive (i.e. did not exhibit a monotonic increase in velocity with depth), which had a significant effect upon the performance of the three field approaches. Both CSW and MASW approaches provided information over a broad spectrum from which velocity–depth profiles were produced, but the upper frequency of operation was limited in both methods because of poorer signal quality at higher frequencies. Shear wave velocity profiles obtained using vertically vibrating sources during CSW surveys were different from profiles obtained using a horizontally polarized source in the refraction survey. This was attributed to different propagation paths and modes of propagation, which were illustrated via additional tomographic inversion of the refraction travel times but could also be attributed to data inversion methods. Probing using an ultra-lightweight cone penetrometer, continuous reflection profiling using ground-penetrating radar, and also an active extraction programme at the field site provided the opportunity to directly observe the subsurface geology and verify field results. Within the sand and gravel sequence, high-velocity layers were associated with matrix-supported coarse gravel lenses, some of which were weakly cemented. Localized high- and low-velocity zones within the underlying bedrock were interpreted as being related to lithostratigraphic heterogeneity and the development of an upper, weathered zone.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1144/​1470-9236/​11-004
Programmes: BGS Programmes 2010 > Land Use, Planning and Development
ISSN: 0481-2085
Date made live: 06 Jun 2012 14:14 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/18285

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...