Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Abiotic drivers and their interactive effect on the flux and carbon isotope (14C and d13C) composition of peat-respired CO2

Hardie, S.M.L.; Garnett, M.H.; Fallick, A.E.; Rowland, A.P.; Ostle, N.J.; Flowers, T.H.. 2011 Abiotic drivers and their interactive effect on the flux and carbon isotope (14C and d13C) composition of peat-respired CO2. Soil Biology and Biochemistry, 43 (12). 2432-2440. 10.1016/j.soilbio.2011.08.010

Abstract
Feedbacks to global warming may cause terrestrial ecosystems to add to anthropogenic CO2 emissions, thus exacerbating climate change. The contribution that soil respiration makes to these terrestrial emissions, particularly from carbon-rich soils such as peatlands, is of significant importance and its response to changing climatic conditions is of considerable debate.We collected intact soil cores from an upland blanket bog situated within the northern Pennines, England, UK and investigated the individual and interactive effects of three primary controls on soil organic matter decomposition: (i) temperature (5, 10 and 15 C); (ii) moisture (50 and 100% field capacity e FC); and (iii) substrate quality, using increasing depth from the surface (0e10, 10e20 and 20e30 cm) as an analogue for increased recalcitrance of soil organic material. Statistical analysis of the results showed that temperature, moisture and substrate quality all significantly affected rates of peat decomposition. Q10 values indicated that the temperature sensitivity of older/more recalcitrant soil organic matter significantly increased (relative to more labile peat) under reduced soil moisture (50% FC) conditions, but not under 100% FC, suggesting that soil microorganisms decomposing the more recalcitrant soil material preferred more aerated conditions. Radiocarbon analyses revealed that soil decomposers were able to respire older, more recalcitrant soil organic matter and that the source of the material (deduced from the d13C analyses) subject to decomposition, changed depending on depth in the peat profile.
Documents
Full text not available from this repository.
Information
Programmes:
UNSPECIFIED
Library
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item