nerc.ac.uk

Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view

Pörtner, Hans O.; Peck, Lloyd S. ORCID: https://orcid.org/0000-0003-3479-6791; Somero, George. 2007 Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philosophical Transactions of the Royal Society of London, Series B, 362 (1488). 2233-2258. https://doi.org/10.1098/rstb.2006.1947

Full text not available from this repository. (Request a copy)

Abstract/Summary

A cause and effect understanding of thermal limitation and adaptation at various levels of biological organization is crucial in the elaboration of how the Antarctic climate has shaped the functional properties of extant Antarctic fauna. At the same time, this understanding requires an integrative view of how the various levels of biological organization may be intertwined. At all levels analysed, the functional specialization to permanently low temperatures implies reduced tolerance of high temperatures, as a trade-off. Maintenance of membrane fluidity, enzyme kinetic properties (K-m and k(cat)) and protein structural flexibility in the cold supports metabolic flux and regulation as well as cellular functioning overall. Gene expression patterns and, even more so, loss of genetic information, especially for myoglobin (Mb) and haemoglobin (Hb) in notothenioid fishes, reflect the specialization of Antarctic organisms to a narrow range of low temperatures. The loss of Mb and Hb in icefish, together with enhanced lipid membrane densities (e. g. higher concentrations of mitochondria), becomes explicable by the exploitation of high oxygen solubility at low metabolic rates in the cold, where an enhanced fraction of oxygen supply occurs through diffusive oxygen flux. Conversely, limited oxygen supply to tissues upon warming is an early cause of functional limitation. Low standard metabolic rates may be linked to extreme stenothermy. The evolutionary forces causing low metabolic rates as a uniform character of life in Antarctic ectothermal animals may be linked to the requirement for high energetic efficiency as required to support higher organismic functioning in the cold. This requirement may result from partial compensation for the thermal limitation of growth, while other functions like hatching, development, reproduction and ageing are largely delayed. As a perspective, the integrative approach suggests that the patterns of oxygen- and capacity-limited thermal tolerance are linked, on one hand, with the capacity and design of molecules and membranes, and, on the other hand, with life-history consequences and lifestyles typically seen in the permanent cold. Future research needs to address the detailed aspects of these interrelationships.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1098/rstb.2006.1947
Programmes: BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Biodiversity, Functions, Limits and Adaptation from Molecules to Ecosystems
ISSN: 0962-8436
Additional Keywords: Antarctic, thermal adaptation, global warming, life history evolution, notothenioid fishes, marine invertebrates
NORA Subject Terms: Marine Sciences
Meteorology and Climatology
Zoology
Biology and Microbiology
Ecology and Environment
Date made live: 20 Oct 2011 10:48 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/11885

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...